StableBeluga1-Delta / apply_delta.py
dmayhem93's picture
Upload apply_delta.py
3f3a6cb
raw
history blame
1.65 kB
"""
Usage:
python3 apply_delta.py --base /path/to/model_weights/llama-65b --target-model-path stabilityai/FreeWilly1-Delta-SafeTensor --delta models/FreeWilly1-Delta-SafeTensor
"""
import argparse
import torch
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForCausalLM
def apply_delta(base_model_path, target_model_path, delta_path):
print("Loading base model")
base = AutoModelForCausalLM.from_pretrained(
base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
print("Loading delta")
delta = AutoModelForCausalLM.from_pretrained(delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
delta_tokenizer = AutoTokenizer.from_pretrained(delta_path)
base_tokenizer = AutoTokenizer.from_pretrained(base_model_path, use_fast=False)
input_embeddings = base.get_input_embeddings().weight.data
output_embeddings = base.get_output_embeddings().weight.data
print("Applying delta")
for name, param in tqdm(base.state_dict().items(), desc="Applying delta"):
assert name in delta.state_dict()
param.data += delta.state_dict()[name]
print("Saving target model")
base.save_pretrained(target_model_path)
delta_tokenizer.save_pretrained(target_model_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--base-model-path", type=str, required=True)
parser.add_argument("--target-model-path", type=str, required=True)
parser.add_argument("--delta-path", type=str, required=True)
args = parser.parse_args()
apply_delta(args.base_model_path, args.target_model_path, args.delta_path)