File size: 9,136 Bytes
d7cbc69
 
12caa83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ace7bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7cbc69
102d1e9
12caa83
 
 
9b17725
12caa83
b89f82b
 
d06c3b2
 
40f4aad
 
d06c3b2
 
 
 
 
 
 
12caa83
 
 
 
 
 
102d1e9
12caa83
 
 
 
102d1e9
12caa83
102d1e9
12caa83
 
 
102d1e9
 
12caa83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102d1e9
12caa83
102d1e9
12caa83
 
 
 
102d1e9
 
12caa83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102d1e9
12caa83
102d1e9
12caa83
 
 
 
102d1e9
 
12caa83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102d1e9
12caa83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102d1e9
12caa83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102d1e9
 
12caa83
 
 
102d1e9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
---
license: other
datasets:
- tiiuae/falcon-refinedweb
- bigcode/the-stack-github-issues
- bigcode/commitpackft
- bigcode/starcoderdata
- EleutherAI/proof-pile-2
- meta-math/MetaMathQA
language:
- en
tags:
- causal-lm
- code
metrics:
- code_eval
library_name: transformers
model-index:
- name: StarCoderBase-3B
  results:
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Python)
    metrics:
    - name: pass@1
      type: pass@1
      value: 32.4
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (C++)
    metrics:
    - name: pass@1
      type: pass@1
      value: 30.9
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Java)
    metrics:
    - name: pass@1
      type: pass@1
      value: 32.1
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (JavaScript)
    metrics:
    - name: pass@1
      type: pass@1
      value: 32.1
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (PHP)
    metrics:
    - name: pass@1
      type: pass@1
      value: 24.2
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Rust)
    metrics:
    - name: pass@1
      type: pass@1
      value: 23.0
      verified: false
---
# `stable-code-3b`

## Model Description

`stable-code-3b` is a 2.7B billion parameter decoder-only language model pre-trained on 1.3 trillion tokens of diverse textual and code datasets. `stable-code-3b` is trained on 18 programming languages (selected based on the 2023 StackOverflow Developer Survey) and demonstrates state-of-the-art performance (compared to models of similar size) on the MultiPL-E metrics across multiple programming languages tested using [BigCode's Evaluation Harness](https://github.com/bigcode-project/bigcode-evaluation-harness/tree/main).

![performance](stable_code_3b_evals.png)

| Model            | Size | Python | C++  | Javascript | Java | PHP  | Rust |
|------------------|------|--------|------|------------|------|------|------|
| **Stable Code**  | 3B   | 32.4%  | 30.9%| 32.1%      | 32.1%| 24.2%| 23.0%|
| CodeLLama        | 7B   | 30.0%  | 28.2%| 32.5%      | 31.1%| 25.7%| 26.3%|
| Deepseek Coder   | 1.3B | 28.6%  | 29.2%| 28.7%      | 29.0%| 23.6%| 18.5%|
| Wizard Coder     | 3B   | 31.6%  | 25.6%| 26.2%      | 25.8%| 25.3%| 20.4%|
| StarCoder        | 3B   | 21.6%  | 19.8%| 21.5%      | 20.5%| 19.0%| 16.9%|
| Replit Code V1.5 | 3B   | 23.0%  | 25.9%| 26.2%      | 23.6%| 23.2%| 21.5%|
| Deci Coder       | 1B   | 19.1%  | 6.8% | 18.4%      | 16.7%| 2.1% | 1.7% |


**Key Features**
* Fill in Middle Capability (FIM)
* Supports Long Context, trained with Sequences upto 16,384

## Usage

Get started generating text with `stable-code-3b` by using the following code snippet:

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-3b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
  "stabilityai/stable-code-3b",
  trust_remote_code=True,
  torch_dtype="auto",
)
model.cuda()
inputs = tokenizer("import torch\nimport torch.nn as nn", return_tensors="pt").to(model.device)
tokens = model.generate(
  **inputs,
  max_new_tokens=48,
  temperature=0.2,
  do_sample=True,
)
print(tokenizer.decode(tokens[0], skip_special_tokens=True))
```

### Run with Fill in Middle (FIM) ⚡️

<details>
<summary> Click to expand </summary>

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-3b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
  "stabilityai/stable-code-3b",
  trust_remote_code=True,
  torch_dtype="auto",
+ attn_implementation="flash_attention_2",
)
model.cuda()
inputs = tokenizer("<fim_prefix>def fib(n):<fim_suffix>    else:\n        return fib(n - 2) + fib(n - 1)<fim_middle>", return_tensors="pt").to(model.device)
tokens = model.generate(
  **inputs,
  max_new_tokens=48,
  temperature=0.2,
  do_sample=True,
)
print(tokenizer.decode(tokens[0], skip_special_tokens=True))
```

</details>

### Run with Flash Attention 2 ⚡️

<details>
<summary> Click to expand </summary>

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-3b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
  "stabilityai/stable-code-3b",
  trust_remote_code=True,
  torch_dtype="auto",
+ attn_implementation="flash_attention_2",
)
model.cuda()
inputs = tokenizer("import torch\nimport torch.nn as nn", return_tensors="pt").to(model.device)
tokens = model.generate(
  **inputs,
  max_new_tokens=48,
  temperature=0.2,
  do_sample=True,
)
print(tokenizer.decode(tokens[0], skip_special_tokens=True))
```

</details>


## Model Details

* **Developed by**: [Stability AI](https://stability.ai/)
* **Model type**: `stable-code-3b` models are auto-regressive language models based on the transformer decoder architecture.
* **Language(s)**: English, Code
* **Library**: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox)
* **License**: Other
* **Contact**: For questions and comments about the model, please email `lm@stability.ai`

### Model Architecture

The model is a decoder-only transformer similar to the LLaMA ([Touvron et al., 2023](https://arxiv.org/abs/2307.09288)) architecture with the following modifications:

| Parameters     | Hidden Size | Layers | Heads | Sequence Length |
|----------------|-------------|--------|-------|-----------------|
| 2,796,431,360  | 2560        | 32     | 32    | 16384            |

* **Position Embeddings**: Rotary Position Embeddings ([Su et al., 2021](https://arxiv.org/abs/2104.09864)) applied to the first 25% of head embedding dimensions for improved throughput following [Black et al. (2022)](https://arxiv.org/pdf/2204.06745.pdf).
* **Tokenizer**: We use a modified version of the GPTNeoX Tokenizer.[`NeoX`](https://github.com/EleutherAI/gpt-neox). We add special tokens to train for Fill in the Middle (FIM) capabilities like `<FIM_PREFIX>` and `<FIM_SUFFIX>` along with other special tokens.

## Training

### Training Dataset

The dataset is comprised of a filtered mixture of open-source large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets): Falcon RefinedWeb extract ([Penedo et al., 2023](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)), along with [CommitPackFT](https://huggingface.co/datasets/bigcode/commitpackft) and [Github Issues](https://huggingface.co/datasets/bigcode/the-stack-github-issues) (BigCode., 2023), and StarCoder ([Li et al., 2023](https://arxiv.org/abs/2305.06161)). We further supplement our training with data from mathematical domains ([Azerbayev, Zhangir, et al., 2023](https://arxiv.org/abs/2310.10631) and, [Yu, Longhui, et al., 2023](https://arxiv.org/abs/2309.12284)). 

### Training Procedure

The model is pre-trained on the aforementioned datasets in `bfloat16` precision, optimized with AdamW.

### Training Infrastructure

* **Hardware**: `stable-code-3b` was trained on the Stability AI cluster across 256 NVIDIA A100 40GB GPUs (AWS P4d instances).

* **Software**: We use a fork of `gpt-neox` ([EleutherAI, 2021](https://github.com/EleutherAI/gpt-neox)), train under 2D parallelism (Data and Tensor Parallel) with ZeRO-1 ([Rajbhandari et al., 2019](https://arxiv.org/abs/1910.02054v3)), and rely on flash-attention as well as SwiGLU and Rotary Embedding kernels from FlashAttention-2 ([Dao et al., 2023](https://tridao.me/publications/flash2/flash2.pdf))

## Use and Limitations

### Intended Use

The model is intended to be used as a foundational base model for application-specific fine-tuning. Developers must evaluate and fine-tune the model for safe performance in downstream applications.

### Limitations and Bias
​
As a base model, this model may exhibit unreliable, unsafe, or other undesirable behaviors that must be corrected through evaluation and fine-tuning prior to deployment. The pre-training dataset may have contained offensive or inappropriate content, even after applying data cleansing filters, which can be reflected in the model-generated text. We recommend that users exercise caution when using these models in production systems. Do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others.

## How to Cite

```bibtex
@misc{stable-code-3b,
      url={[https://huggingface.co/stabilityai/stable-code-3b](https://huggingface.co/stabilityai/stable-code-3b)},
      title={Stable Code 3B},
      author={Pinnaparaju, Nikhil and Adithyan, Reshinth and Phung, Duy and Tow, Jonathan and Baicoianu, James and  and Cooper, Nathan}
}
```