File size: 1,706 Bytes
ba89e30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import streamlit as st
from diffusers import StableDiffusionInpaintPipeline
from PIL import Image
import torch
# Set up title and description
st.title("Insert Yourself Into Historical Photos with Stable Diffusion!")
st.write("Upload a historical photo and a mask, then describe how you'd like to place yourself into the scene.")
# Load model (for inpainting)
@st.cache_resource
def load_pipeline():
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-inpainting",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
)
pipe = pipe.to("cuda" if torch.cuda.is_available() else "cpu")
return pipe
pipe = load_pipeline()
# File uploads for base image and mask
base_image = st.file_uploader("Upload the Historical Photo", type=["jpg", "jpeg", "png"])
mask_image = st.file_uploader("Upload the Mask (Black & White Image)", type=["jpg", "jpeg", "png"])
# Prompt input
prompt = st.text_input("Describe the scene. How do you want to place yourself?")
if base_image and mask_image and prompt:
# Display input images
st.image(base_image, caption="Historical Photo", use_column_width=True)
st.image(mask_image, caption="Mask", use_column_width=True)
# Load images using PIL
base_image = Image.open(base_image).convert("RGB")
mask_image = Image.open(mask_image).convert("RGB")
# Generate inpainting
st.write("Generating the image... This may take a moment.")
result = pipe(prompt=prompt, image=base_image, mask_image=mask_image).images[0]
# Display result
st.image(result, caption="Inpainted Image", use_column_width=True)
st.write("Right-click on the image to download!")
|