File size: 7,363 Bytes
0a11f58 eef8a74 0a11f58 f99f5eb 43d0fa6 f99f5eb 26c72b7 f99f5eb 26c72b7 f99f5eb 26c72b7 f99f5eb 26c72b7 f99f5eb 26c72b7 f99f5eb 07ad387 f99f5eb eef8a74 f99f5eb a39e446 f99f5eb a39e446 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
---
license: openrail++
tags:
- text-to-image
- stable-diffusion
---
# SD-XL 1.0-base Model Card
![row01](01.png)
## Model
![pipeline](pipeline.png)
[SDXL](https://arxiv.org/abs/2307.01952) consists of an [ensemble of experts](https://arxiv.org/abs/2211.01324) pipeline for latent diffusion:
In a first step, the base model is used to generate (noisy) latents,
which are then further processed with a refinement model (available here: https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/) specialized for the final denoising steps.
Note that the base model can be used as a standalone module.
Alternatively, we can use a two-stage pipeline as follows:
First, the base model is used to generate latents of the desired output size.
In the second step, we use a specialized high-resolution model and apply a technique called SDEdit (https://arxiv.org/abs/2108.01073, also known as "img2img")
to the latents generated in the first step, using the same prompt. This technique is slightly slower than the first one, as it requires more function evaluations.
Source code is available at https://github.com/Stability-AI/generative-models .
### Model Description
- **Developed by:** Stability AI
- **Model type:** Diffusion-based text-to-image generative model
- **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md)
- **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses two fixed, pretrained text encoders ([OpenCLIP-ViT/G](https://github.com/mlfoundations/open_clip) and [CLIP-ViT/L](https://github.com/openai/CLIP/tree/main)).
- **Resources for more information:** Check out our [GitHub Repository](https://github.com/Stability-AI/generative-models) and the [SDXL report on arXiv](https://arxiv.org/abs/2307.01952).
### Model Sources
For research purposes, we recommned our `generative-models` Github repository (https://github.com/Stability-AI/generative-models), which implements the most popoular diffusion frameworks (both training and inference) and for which new functionalities like distillation will be added over time.
[Clipdrop](https://clipdrop.co/stable-diffusion) provides free SDXL inference.
- **Repository:** https://github.com/Stability-AI/generative-models
- **Demo:** https://clipdrop.co/stable-diffusion
## Evaluation
![comparison](comparison.png)
The chart above evaluates user preference for SDXL (with and without refinement) over SDXL 0.9 and Stable Diffusion 1.5 and 2.1.
The SDXL base model performs significantly better than the previous variants, and the model combined with the refinement module achieves the best overall performance.
### 🧨 Diffusers
Make sure to upgrade diffusers to >= 0.18.0:
```
pip install diffusers --upgrade
```
In addition make sure to install `transformers`, `safetensors`, `accelerate` as well as the invisible watermark:
```
pip install invisible_watermark transformers accelerate safetensors
```
You can use the model then as follows
```py
from diffusers import DiffusionPipeline
import torch
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
pipe.to("cuda")
# if using torch < 2.0
# pipe.enable_xformers_memory_efficient_attention()
prompt = "An astronaut riding a green horse"
images = pipe(prompt=prompt).images[0]
```
When using `torch >= 2.0`, you can improve the inference speed by 20-30% with torch.compile. Simple wrap the unet with torch compile before running the pipeline:
```py
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
```
If you are limited by GPU VRAM, you can enable *cpu offloading* by calling `pipe.enable_model_cpu_offload`
instead of `.to("cuda")`:
```diff
- pipe.to("cuda")
+ pipe.enable_model_cpu_offload()
```
### Optimum
[Optimum](https://github.com/huggingface/optimum) provides a Stable Diffusion pipeline compatible with both [OpenVINO](https://docs.openvino.ai/latest/index.html) and [ONNX Runtime](https://onnxruntime.ai/).
#### OpenVINO
To install Optimum with the dependencies required for OpenVINO :
```bash
pip install optimum[openvino]
```
To load an OpenVINO model and run inference with OpenVINO Runtime, you need to replace `StableDiffusionXLPipeline` with Optimum `OVStableDiffusionXLPipeline`. In case you want to load a PyTorch model and convert it to the OpenVINO format on-the-fly, you can set `export=True`.
```diff
- from diffusers import StableDiffusionPipeline
+ from optimum.intel import OVStableDiffusionPipeline
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
- pipeline = StableDiffusionPipeline.from_pretrained(model_id)
+ pipeline = OVStableDiffusionPipeline.from_pretrained(model_id)
prompt = "A majestic lion jumping from a big stone at night"
image = pipeline(prompt).images[0]
```
You can find more examples (such as static reshaping and model compilation) in optimum [documentation](https://huggingface.co/docs/optimum/main/en/intel/inference#stable-diffusion-xl).
#### ONNX
To install Optimum with the dependencies required for ONNX Runtime inference :
```bash
pip install optimum[onnxruntime]
```
To load an ONNX model and run inference with ONNX Runtime, you need to replace `StableDiffusionXLPipeline` with Optimum `ORTStableDiffusionXLPipeline`. In case you want to load a PyTorch model and convert it to the ONNX format on-the-fly, you can set `export=True`.
```diff
- from diffusers import StableDiffusionPipeline
+ from optimum.onnxruntime import ORTStableDiffusionPipeline
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
- pipeline = StableDiffusionPipeline.from_pretrained(model_id)
+ pipeline = ORTStableDiffusionPipeline.from_pretrained(model_id)
prompt = "A majestic lion jumping from a big stone at night"
image = pipeline(prompt).images[0]
```
You can find more examples in optimum [documentation](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/models#stable-diffusion-xl).
## Uses
### Direct Use
The model is intended for research purposes only. Possible research areas and tasks include
- Generation of artworks and use in design and other artistic processes.
- Applications in educational or creative tools.
- Research on generative models.
- Safe deployment of models which have the potential to generate harmful content.
- Probing and understanding the limitations and biases of generative models.
Excluded uses are described below.
### Out-of-Scope Use
The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.
## Limitations and Bias
### Limitations
- The model does not achieve perfect photorealism
- The model cannot render legible text
- The model struggles with more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere”
- Faces and people in general may not be generated properly.
- The autoencoding part of the model is lossy.
### Bias
While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.
|