--- tags: - autotrain - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stable-diffusion-v1-5/stable-diffusion-v1-5 instance_prompt: photo of ambika0 man license: openrail++ --- # ModelsLab LoRA DreamBooth Training - stablediffusionapi/my-stablediffusion-lora-6484 These are LoRA adaption weights for stable-diffusion-v1-5/stable-diffusion-v1-5. The weights were trained on photo of ambika0 man using [ModelsLab](https://modelslab.com). LoRA for the text encoder was enabled: False. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py !pip install -q transformers accelerate peft diffusers from diffusers import DiffusionPipeline import torch pipe_id = "Lykon/DreamShaper" pipe = DiffusionPipeline.from_pretrained(pipe_id, torch_dtype=torch.float16).to("cuda") pipe.load_lora_weights("stablediffusionapi/my-stablediffusion-lora-6484", weight_name="pytorch_lora_weights.safetensors", adapter_name="abc") prompt = "abc of a hacker with a hoodie" lora_scale = 0.9 image = pipe( prompt, num_inference_steps=30, cross_attention_kwargs={"scale": 0.9}, generator=torch.manual_seed(0) ).images[0] image ```