File size: 3,803 Bytes
2d1d254
 
 
 
4a8bb46
4bdd8d0
 
2d1d254
 
4a8bb46
 
2d1d254
 
b02d4c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bdd8d0
 
 
 
f422ddb
2d1d254
 
 
c4dd631
2d1d254
672f460
 
 
 
209dd79
 
2d1d254
672f460
 
 
 
 
 
2d1d254
 
 
c460aaa
2d1d254
c460aaa
2d1d254
 
209dd79
672f460
2d1d254
 
 
672f460
2d1d254
 
 
 
 
 
672f460
 
 
 
2d1d254
 
 
 
 
 
672f460
2d1d254
 
 
 
 
672f460
 
 
 
 
2d1d254
 
 
 
 
 
 
672f460
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
---
license: apache-2.0
tags:
- generated_from_trainer
- summarization
- stacked summaries
- prompt engineering
metrics:
- rouge
datasets:
- stacked-summaries/stacked-samsum-1024
model-index:
- name: flan-t5-large-stacked-samsum1024-WIP3
  results:
  - task:
      type: summarization
      name: Summarization
    dataset:
      name: samsum
      type: samsum
      config: samsum
      split: test
    metrics:
    - name: ROUGE-1
      type: rouge
      value: 47.6682
      verified: true
    - name: ROUGE-2
      type: rouge
      value: 23.3053
      verified: true
    - name: ROUGE-L
      type: rouge
      value: 39.7678
      verified: true
    - name: ROUGE-LSUM
      type: rouge
      value: 43.259
      verified: true
    - name: loss
      type: loss
      value: 2.372586965560913
      verified: true
    - name: gen_len
      type: gen_len
      value: 17.4237
      verified: true
language:
- en
library_name: transformers
pipeline_tag: summarization

---


# flan-t5-large-stacked-samsum-1024

 <a href="https://colab.research.google.com/gist/pszemraj/a4bf61f593ebda9a8db6dc58839d9de4/brief-demo-flan-t5-stacked-samsum.ipynb">
  <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>

This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the `stacked-summaries/stacked-samsum-1024` dataset.

It achieves the following results on the evaluation set:
- Loss: 2.1846
- Rouge1: 57.9637
- Rouge2: 28.7446
- Rougel: 44.3826
- Rougelsum: 54.0399
- Gen Len: 122.77

## Model description

This model card presents a model trained on a stacked dataset that aims to improve summarization by testing the benefits of "task-oriented pretraining". The model is designed to learn how to effectively condense and distill information from text by stacking summaries and separating them into independent concepts. In this way, the model can learn to identify essential information without simply mimicking the style of the dataset summaries.

The token used to identify a new concept in the summary is `[NEXT_CONCEPT]`. You can split an output summary based on this token to see how it split the input text information: `summary_text.split("[NEXT_CONCEPT]")` etc.
## Intended uses & limitations

- max input/output is 1024 tokens
- this is mostly a test because `samsum` is not exactly the best dataset for general-purpose summarization

## Training and evaluation data

See the dataset card linked on this page for info

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 24915
- distributed_type: multi-GPU
- gradient_accumulation_steps: 32
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 1.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 0.1195        | 0.17  | 20   | 2.0635          | 57.8829 | 28.7887 | 44.4256 | 54.1299   | 121.8   |
| 0.1084        | 0.35  | 40   | 2.1178          | 58.0416 | 28.6487 | 44.3905 | 54.1557   | 122.893 |
| 0.1019        | 0.52  | 60   | 2.1576          | 57.816  | 28.7069 | 44.4242 | 53.9598   | 120.524 |
| 0.0975        | 0.7   | 80   | 2.1821          | 57.9597 | 28.8178 | 44.4854 | 54.068    | 121.793 |
| 0.0947        | 0.87  | 100  | 2.1846          | 57.9637 | 28.7446 | 44.3826 | 54.0399   | 122.77  |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.6.1
- Tokenizers 0.13.1