merge tested changes for math word cloud
Browse files- handler.py +25 -11
handler.py
CHANGED
@@ -40,7 +40,7 @@ class Utterance:
|
|
40 |
self.unit_measure = endtime - starttime
|
41 |
else:
|
42 |
self.unit_measure = None
|
43 |
-
self.aggregate_unit_measure = endtime
|
44 |
self.num_math_terms = None
|
45 |
self.math_terms = None
|
46 |
|
@@ -151,7 +151,7 @@ class Transcript:
|
|
151 |
avg_student_length = student_words / student_utt_count if student_utt_count > 0 else 0
|
152 |
return {'teacher': teacher_percentage, 'student': student_percentage}, {'teacher': avg_teacher_length, 'student': avg_student_length}
|
153 |
|
154 |
-
def
|
155 |
teacher_dict = {}
|
156 |
student_dict = {}
|
157 |
uptake_teacher_dict = {}
|
@@ -232,7 +232,7 @@ class QuestionModel:
|
|
232 |
max_length=self.max_length,
|
233 |
input_str=True)
|
234 |
output = self.get_prediction(instance)
|
235 |
-
print(output)
|
236 |
utt.question = np.argmax(
|
237 |
output["is_question_logits"][0].tolist())
|
238 |
|
@@ -377,6 +377,7 @@ def load_math_terms():
|
|
377 |
def run_math_density(transcript):
|
378 |
math_terms, math_terms_dict = load_math_terms()
|
379 |
sorted_terms = sorted(math_terms, key=len, reverse=True)
|
|
|
380 |
for i, utt in enumerate(transcript.utterances):
|
381 |
text = utt.get_clean_text(remove_punct=False)
|
382 |
num_matches = 0
|
@@ -387,12 +388,21 @@ def run_math_density(transcript):
|
|
387 |
# Filter out matches that share positions with longer terms
|
388 |
matches = [match for match in matches if not any(match.start() in range(existing[0], existing[1]) for existing in matched_positions)]
|
389 |
if len(matches) > 0:
|
|
|
|
|
|
|
390 |
match_list.append(math_terms_dict[term])
|
391 |
# Update matched positions
|
392 |
matched_positions.update((match.start(), match.end()) for match in matches)
|
393 |
num_matches += len(matches)
|
394 |
utt.num_math_terms = num_matches
|
395 |
utt.math_terms = match_list
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
|
397 |
class EndpointHandler():
|
398 |
def __init__(self, path="."):
|
@@ -427,34 +437,38 @@ class EndpointHandler():
|
|
427 |
uptake_speaker = params.pop("uptake_speaker", None)
|
428 |
uptake_model.run_inference(transcript, min_prev_words=params['uptake_min_num_words'],
|
429 |
uptake_speaker=uptake_speaker)
|
|
|
|
|
430 |
# Reasoning
|
431 |
reasoning_model = ReasoningModel(
|
432 |
self.device, self.tokenizer, self.input_builder)
|
433 |
reasoning_model.run_inference(transcript, uptake_speaker=uptake_speaker)
|
434 |
-
|
|
|
435 |
# Question
|
436 |
question_model = QuestionModel(
|
437 |
self.device, self.tokenizer, self.input_builder)
|
438 |
question_model.run_inference(transcript)
|
439 |
-
|
|
|
440 |
# Focusing Question
|
441 |
focusing_question_model = FocusingQuestionModel(
|
442 |
self.device, self.tokenizer, self.input_builder)
|
443 |
focusing_question_model.run_inference(transcript, uptake_speaker=uptake_speaker)
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
transcript.update_utterance_roles(uptake_speaker)
|
448 |
transcript.calculate_aggregate_word_count()
|
449 |
-
return_dict = {'talkDistribution': None, 'talkLength': None, 'talkMoments': None, 'commonTopWords': None, 'uptakeTopWords': None}
|
450 |
talk_dist, talk_len = transcript.get_talk_distribution_and_length(uptake_speaker)
|
451 |
return_dict['talkDistribution'] = talk_dist
|
452 |
return_dict['talkLength'] = talk_len
|
453 |
talk_moments = transcript.get_talk_timeline()
|
454 |
return_dict['talkMoments'] = talk_moments
|
455 |
-
word_cloud, uptake_word_cloud = transcript.
|
456 |
return_dict['commonTopWords'] = word_cloud
|
457 |
return_dict['uptakeTopWords'] = uptake_word_cloud
|
458 |
-
|
459 |
|
460 |
return return_dict
|
|
|
40 |
self.unit_measure = endtime - starttime
|
41 |
else:
|
42 |
self.unit_measure = None
|
43 |
+
self.aggregate_unit_measure = endtime
|
44 |
self.num_math_terms = None
|
45 |
self.math_terms = None
|
46 |
|
|
|
151 |
avg_student_length = student_words / student_utt_count if student_utt_count > 0 else 0
|
152 |
return {'teacher': teacher_percentage, 'student': student_percentage}, {'teacher': avg_teacher_length, 'student': avg_student_length}
|
153 |
|
154 |
+
def get_word_clouds(self):
|
155 |
teacher_dict = {}
|
156 |
student_dict = {}
|
157 |
uptake_teacher_dict = {}
|
|
|
232 |
max_length=self.max_length,
|
233 |
input_str=True)
|
234 |
output = self.get_prediction(instance)
|
235 |
+
# print(output)
|
236 |
utt.question = np.argmax(
|
237 |
output["is_question_logits"][0].tolist())
|
238 |
|
|
|
377 |
def run_math_density(transcript):
|
378 |
math_terms, math_terms_dict = load_math_terms()
|
379 |
sorted_terms = sorted(math_terms, key=len, reverse=True)
|
380 |
+
math_word_cloud = {}
|
381 |
for i, utt in enumerate(transcript.utterances):
|
382 |
text = utt.get_clean_text(remove_punct=False)
|
383 |
num_matches = 0
|
|
|
388 |
# Filter out matches that share positions with longer terms
|
389 |
matches = [match for match in matches if not any(match.start() in range(existing[0], existing[1]) for existing in matched_positions)]
|
390 |
if len(matches) > 0:
|
391 |
+
if math_terms_dict[term] not in math_word_cloud:
|
392 |
+
math_word_cloud[math_terms_dict[term]] = 0
|
393 |
+
math_word_cloud[math_terms_dict[term]] += len(matches)
|
394 |
match_list.append(math_terms_dict[term])
|
395 |
# Update matched positions
|
396 |
matched_positions.update((match.start(), match.end()) for match in matches)
|
397 |
num_matches += len(matches)
|
398 |
utt.num_math_terms = num_matches
|
399 |
utt.math_terms = match_list
|
400 |
+
dict_list = []
|
401 |
+
for word in math_word_cloud.keys():
|
402 |
+
dict_list.append(
|
403 |
+
{'text': word, 'value': math_word_cloud[word]})
|
404 |
+
sorted_dict_list = sorted(dict_list, key=lambda x: x['value'], reverse=True)
|
405 |
+
return sorted_dict_list[:50]
|
406 |
|
407 |
class EndpointHandler():
|
408 |
def __init__(self, path="."):
|
|
|
437 |
uptake_speaker = params.pop("uptake_speaker", None)
|
438 |
uptake_model.run_inference(transcript, min_prev_words=params['uptake_min_num_words'],
|
439 |
uptake_speaker=uptake_speaker)
|
440 |
+
del uptake_model
|
441 |
+
|
442 |
# Reasoning
|
443 |
reasoning_model = ReasoningModel(
|
444 |
self.device, self.tokenizer, self.input_builder)
|
445 |
reasoning_model.run_inference(transcript, uptake_speaker=uptake_speaker)
|
446 |
+
del reasoning_model
|
447 |
+
|
448 |
# Question
|
449 |
question_model = QuestionModel(
|
450 |
self.device, self.tokenizer, self.input_builder)
|
451 |
question_model.run_inference(transcript)
|
452 |
+
del question_model
|
453 |
+
|
454 |
# Focusing Question
|
455 |
focusing_question_model = FocusingQuestionModel(
|
456 |
self.device, self.tokenizer, self.input_builder)
|
457 |
focusing_question_model.run_inference(transcript, uptake_speaker=uptake_speaker)
|
458 |
+
del focusing_question_model
|
459 |
+
|
460 |
+
math_cloud = run_math_density(transcript)
|
461 |
transcript.update_utterance_roles(uptake_speaker)
|
462 |
transcript.calculate_aggregate_word_count()
|
463 |
+
return_dict = {'talkDistribution': None, 'talkLength': None, 'talkMoments': None, 'commonTopWords': None, 'uptakeTopWords': None, 'mathTopWords': None}
|
464 |
talk_dist, talk_len = transcript.get_talk_distribution_and_length(uptake_speaker)
|
465 |
return_dict['talkDistribution'] = talk_dist
|
466 |
return_dict['talkLength'] = talk_len
|
467 |
talk_moments = transcript.get_talk_timeline()
|
468 |
return_dict['talkMoments'] = talk_moments
|
469 |
+
word_cloud, uptake_word_cloud = transcript.get_word_clouds()
|
470 |
return_dict['commonTopWords'] = word_cloud
|
471 |
return_dict['uptakeTopWords'] = uptake_word_cloud
|
472 |
+
return_dict['mathTopWords'] = math_cloud
|
473 |
|
474 |
return return_dict
|