File size: 2,179 Bytes
2b8bbe4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
#!/usr/bin/env python
# coding: utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This script creates a super tiny model that is useful inside tests, when we just want to test that
# the machinery works, without needing to the check the quality of the outcomes.
#
# This version creates a tiny model through reduction of a normal pre-trained model, but keeping the
# full vocab, merges file, and thus also resulting in a larger model due to a large vocab size.
# This gives ~3MB in total for all files.
#
# If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated
#
#
# It will be used then as "stas/tiny-wmt19-en-de"
# Build
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
mname = "facebook/wmt19-en-de"
tokenizer = FSMTTokenizer.from_pretrained(mname)
# get the correct vocab sizes, etc. from the master model
config = FSMTConfig.from_pretrained(mname)
config.update(dict(
d_model=4,
encoder_layers=1, decoder_layers=1,
encoder_ffn_dim=4, decoder_ffn_dim=4,
encoder_attention_heads=1, decoder_attention_heads=1))
tiny_model = FSMTForConditionalGeneration(config)
print(f"num of params {tiny_model.num_parameters()}")
# Test
batch = tokenizer(["Making tiny model"], return_tensors="pt")
outputs = tiny_model(**batch)
print("test output:", len(outputs.logits[0]))
# Save
mname_tiny = "tiny-wmt19-en-de"
tiny_model.half() # makes it smaller
tiny_model.save_pretrained(mname_tiny)
tokenizer.save_pretrained(mname_tiny)
print(f"Generated {mname_tiny}")
# Upload
# transformers-cli upload tiny-wmt19-en-de
|