File size: 1,972 Bytes
6a68286 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: gemma
base_model: google/paligemma-3b-pt-224
tags:
- generated_from_trainer
datasets:
- vq_av2
model-index:
- name: paligemma_vqa_lower
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/statking/huggingface/runs/w0sur7w6)
# paligemma_vqa_lower
This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on the vq_av2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0131
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1200
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 5.5759 | 0.1471 | 500 | 4.3404 |
| 0.2128 | 0.2943 | 1000 | 0.1315 |
| 0.0267 | 0.4414 | 1500 | 0.0261 |
| 0.0151 | 0.5886 | 2000 | 0.0157 |
| 0.0143 | 0.7357 | 2500 | 0.0136 |
| 0.0129 | 0.8829 | 3000 | 0.0131 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.2.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|