|
from typing import List, Dict, Optional |
|
import chromadb |
|
import numpy as np |
|
from embeddings import EmbeddingManager, MatchResult |
|
from encoder import create_encoders, FIELD_MAPPING |
|
|
|
class ChromaMatchingSystem: |
|
def __init__(self, collection_name: str = "job_seekers"): |
|
|
|
self.client = chromadb.Client() |
|
|
|
|
|
job_encoder, seeker_encoder = create_encoders('all-mpnet-base-v2') |
|
self.embedding_manager = EmbeddingManager(job_encoder, seeker_encoder) |
|
|
|
|
|
self.collections = {} |
|
|
|
job_fields = set(FIELD_MAPPING.keys()) |
|
for field in job_fields: |
|
self.collections[field] = self.client.get_or_create_collection( |
|
name=f"{collection_name}_{field}", |
|
embedding_function=None |
|
) |
|
|
|
def add_job_seeker(self, jobseeker_id: str, processed_seeker, unprocessed_seeker, metadata: Optional[Dict] = None): |
|
"""Add a job seeker to ChromaDB collections""" |
|
|
|
field_embeddings = self.embedding_manager.embed_jobseeker(processed_seeker, unprocessed_seeker) |
|
|
|
|
|
for job_field, seeker_field in FIELD_MAPPING.items(): |
|
if seeker_field in field_embeddings: |
|
|
|
safe_metadata = metadata if metadata is not None else {} |
|
|
|
|
|
self.collections[job_field].add( |
|
embeddings=[field_embeddings[seeker_field].tolist()], |
|
metadatas=[safe_metadata], |
|
ids=[jobseeker_id], |
|
documents=[jobseeker_id] |
|
) |
|
|
|
def get_matches(self, job_posting, n_results: int = 10, where_conditions: Optional[Dict] = None) -> List[MatchResult]: |
|
"""Get matches using your existing similarity calculation with ChromaDB storage""" |
|
|
|
job_embeddings = self.embedding_manager.embed_jobposting(job_posting) |
|
|
|
matches = [] |
|
|
|
field_results = {} |
|
|
|
|
|
for job_field in FIELD_MAPPING.keys(): |
|
if job_field in job_embeddings: |
|
try: |
|
results = self.collections[job_field].query( |
|
query_embeddings=[job_embeddings[job_field].tolist()], |
|
n_results=n_results, |
|
where=where_conditions, |
|
include=["embeddings", "metadatas", "distances", "documents"] |
|
) |
|
if results and 'embeddings' in results and results['embeddings']: |
|
field_results[job_field] = results |
|
except Exception as e: |
|
print(f"Error querying {job_field}: {str(e)}") |
|
continue |
|
|
|
|
|
jobseeker_ids = set() |
|
for results in field_results.values(): |
|
if 'ids' in results and results['ids']: |
|
jobseeker_ids.update(results['ids'][0]) |
|
|
|
|
|
for jobseeker_id in jobseeker_ids: |
|
|
|
seeker_embeddings = {} |
|
for job_field, seeker_field in FIELD_MAPPING.items(): |
|
if job_field in field_results: |
|
results = field_results[job_field] |
|
if ('ids' in results and results['ids'] and |
|
'embeddings' in results and results['embeddings']): |
|
if jobseeker_id in results['ids'][0]: |
|
idx = results['ids'][0].index(jobseeker_id) |
|
if idx < len(results['embeddings'][0]): |
|
embedding = results['embeddings'][0][idx] |
|
seeker_embeddings[seeker_field] = np.array(embedding) |
|
|
|
|
|
if seeker_embeddings: |
|
|
|
match_result = self.embedding_manager.calculate_similarity( |
|
job_embeddings, |
|
seeker_embeddings |
|
) |
|
matches.append(match_result) |
|
|
|
|
|
matches.sort(key=lambda x: x.similarity_score, reverse=True) |
|
return matches[:n_results] |