embeddings-sebastian / test_embeddings.py
sebastianalgharaballi's picture
added transform_jobseeker_to_opensearch
b0bee8a verified
from dataclasses import dataclass
from typing import List, Optional, Dict
from datetime import datetime
import numpy as np
from termcolor import colored
import json
from encoder import create_encoders, FIELD_MAPPING, LegacyFieldEncoder
from embeddings import EmbeddingManager, MatchResult, Skill
@dataclass
class Skill:
skill_name: str
@dataclass
class JobPosting:
# Essential matching fields (from API)
title: str
role_description: str
company_description: str
primary_skills: List[Skill]
secondary_skills: List[Skill]
# Additional API fields (with defaults)
job_posting_id: str = "test_id"
status: str = "active"
location: str = "Test Location"
workplace_model: str = "hybrid"
job_engagement: str = "contract-to-hire"
min_years_of_experience: int = 0
max_years_of_experience: int = 0
project_duration_from: datetime = datetime.now()
project_duration_to: datetime = datetime.now()
hourly_bill_rate_min: float = 50.0
hourly_bill_rate_max: float = 100.0
annual_salary_min: float = 100000.0
annual_salary_max: float = 150000.0
day_to_day_job_responsibilities: str = ""
reason_for_hire: str = ""
application_of_skills: str = ""
company_id: str = "test_company"
@dataclass
class IndependentJobSeekerAssessmentRDS:
# Essential matching fields (from API)
primary_skills: List[str]
secondary_skills: List[str]
experiences: List[dict]
educations: List[dict]
certifications: List[dict]
@dataclass
class JobseekerInfoRDS:
summary: str
def transform_jobseeker_to_opensearch(jobseeker: IndependentJobSeekerAssessmentRDS, jobseeker_id: str) -> Dict:
"""Transform jobseeker data to OpenSearch format"""
return {
"jobseeker_id": jobseeker_id,
"primary_skills": jobseeker.primary_skills,
"secondary_skills": jobseeker.secondary_skills,
"experiences": jobseeker.experiences,
"educations": jobseeker.educations,
"certifications": jobseeker.certifications,
}
def create_test_data():
"""Create test data matching actual API fields"""
print("\nCreating test data...")
# Create test job posting with only relevant fields
job_posting = JobPosting(
title="Senior Software Engineer - ML/Cloud",
role_description="Leading backend development team in cloud infrastructure projects. "
"Focus on machine learning systems and scalable architectures. "
"Responsible for ML pipeline optimization and team mentorship.",
company_description="Tech company specializing in AI solutions",
primary_skills=[
Skill("Python"),
Skill("AWS"),
Skill("Kubernetes"),
Skill("TensorFlow"),
Skill("PyTorch")
],
secondary_skills=[
Skill("Docker"),
Skill("CI/CD"),
Skill("Agile"),
Skill("Team Leadership")
]
)
# Create matching job seeker (should show high similarity)
matching_seeker = IndependentJobSeekerAssessmentRDS(
primary_skills=[
"Python", "AWS", "Kubernetes", "TensorFlow", "PyTorch"
],
secondary_skills=[
"Docker", "CI/CD", "Agile", "Team Leadership"
],
experiences=[{
"title": "Senior Software Engineer",
"company": "AI Tech Corp",
"duration": "4 years",
"description": "Led machine learning infrastructure team, developed scalable ML pipelines, "
"optimized cloud resources, mentored junior engineers"
}],
educations=[{
"degree": "Master's",
"field": "Computer Science",
"institution": "Tech University"
}],
certifications=[{
"name": "AWS Solutions Architect Professional",
"organization": "AWS",
"start_date": "2023-01",
"end_date": "2026-01"
}]
)
matching_info = JobseekerInfoRDS(
summary="Senior ML engineer specialized in building scalable AI systems and leading engineering teams"
)
# Create partial matching job seeker - more realistic partial match
partial_matching_seeker = IndependentJobSeekerAssessmentRDS(
primary_skills=[
"Python", "AWS", # Has the basic skills
"Java",
"TensorFlow" # Missing PyTorch, just has TensorFlow
],
secondary_skills=[
"Docker", # Has some but not all secondary skills
"Git", # Different version control instead of CI/CD
"Scrum" # Basic Agile framework but no team leadership
],
experiences=[{
"title": "Data Analyst",
"company": "Tech Solutions Inc",
"duration": "2 years",
"description": "Worked on machine learning projects using TensorFlow. "
"Maintained AWS infrastructure and helped with basic Kubernetes deployments. "
"Member of an agile team developing ML-powered features."
}],
educations=[{
"degree": "Bachelor's", # Lower education level
"field": "Computer Science",
"institution": "Tech University"
}],
certifications=[{
"name": "AWS Cloud Practitioner", # Entry-level cert
"organization": "AWS",
"start_date": "2022-01",
"end_date": "2025-01"
}]
)
partial_matching_info = JobseekerInfoRDS(
summary="Data analyst working on graphical analysis and budget forecasting."
)
# Create non-matching job seeker
non_matching_seeker = IndependentJobSeekerAssessmentRDS(
primary_skills=[
"Java", "Spring", "Oracle"
],
secondary_skills=[
"Hibernate", "JSP", "Struts"
],
experiences=[{
"title": "Java Developer",
"company": "Enterprise Corp",
"duration": "5 years",
"description": "Built enterprise banking applications using Java stack, "
"implemented transaction processing systems"
}],
educations=[{
"degree": "Bachelor's",
"field": "Information Systems",
"institution": "Business School"
}],
certifications=[{
"name": "Oracle Certified Professional",
"organization": "Oracle",
"start_date": "2022-01",
"end_date": "2025-01"
}]
)
non_matching_info = JobseekerInfoRDS(
summary="Experienced Java developer specialized in enterprise banking applications"
)
return (
job_posting,
matching_seeker,
matching_info,
partial_matching_seeker,
partial_matching_info,
non_matching_seeker,
non_matching_info
)
def analyze_match_result(match_result: MatchResult, candidate_type: str = "matching"):
"""Analyze and display match results"""
print(f"\nAnalyzing match results for {candidate_type} candidate:")
print("=" * 60)
# Print field-by-field analysis
print("\nField-by-Field Analysis:")
print("-" * 40)
# Define the order we want to display fields
field_order = [
'title_summary',
'primary_skills_primary_skills',
'secondary_skills_secondary_skills',
'role_description_experience',
'role_description_certifications' # Added certifications
]
# Print scores in specified order
for field_pair in field_order:
if field_pair in match_result.field_scores:
score = match_result.field_scores[field_pair]
score_color = "green" if score > 0.85 else "yellow" if score > 0.7 else "red"
print(f"{field_pair:35} | {colored(f'{score:.3f}', score_color)}")
# Print overall similarity
print("\nOverall Match Analysis:")
print("-" * 40)
score_color = "green" if match_result.similarity_score > 0.8 else \
"yellow" if match_result.similarity_score > 0.65 else "red"
print(f"Match Score: {colored(f'{match_result.similarity_score:.3f}', score_color)}")
# Print interpretation
print("\nMatch Interpretation:")
if match_result.similarity_score > 0.8:
print(colored("Strong Match", "green"), "- Highly relevant candidate")
print("Key Strengths:")
print(match_result.explanation)
elif match_result.similarity_score > 0.65:
print(colored("Moderate Match", "yellow"), "- Potentially suitable candidate")
print("Analysis:")
print(match_result.explanation)
else:
print(colored("Weak Match", "red"), "- May not be suitable")
print("Gaps:")
print(match_result.explanation)
return match_result.similarity_score
def run_model_comparison_tests(manager: EmbeddingManager):
"""Run comprehensive comparison tests"""
print("\nInitializing embedding manager...")
# Get test data
(job_posting, matching_seeker, matching_info,
partial_matching_seeker, partial_matching_info,
non_matching_seeker, non_matching_info) = create_test_data()
print("\n" + "="*80)
print("Testing with matching candidate (should show high similarity)")
print("="*80)
# Get embeddings and match result for matching candidate
job_embeddings = manager.embed_jobposting(job_posting)
matching_embeddings = manager.embed_jobseeker(matching_seeker, matching_info)
matching_result = manager.calculate_similarity(job_embeddings, matching_embeddings)
matching_similarity = analyze_match_result(matching_result, "matching")
print("\n" + "="*80)
print("Testing with partially matching candidate (should show moderate similarity)")
print("="*80)
# Get embeddings and match result for partial match
partial_embeddings = manager.embed_jobseeker(partial_matching_seeker, partial_matching_info)
partial_result = manager.calculate_similarity(job_embeddings, partial_embeddings)
partial_similarity = analyze_match_result(partial_result, "partial matching")
print("\n" + "="*80)
print("Testing with non-matching candidate (should show low similarity)")
print("="*80)
# Get embeddings and match result for non-match
non_matching_embeddings = manager.embed_jobseeker(non_matching_seeker, non_matching_info)
non_matching_result = manager.calculate_similarity(job_embeddings, non_matching_embeddings)
non_matching_similarity = analyze_match_result(non_matching_result, "non-matching")
# Print comparative analysis
print("\nComparative Analysis:")
print("="*40)
# Similarity differences
print("\nSimilarity Differences:")
match_vs_partial = matching_similarity - partial_similarity
match_vs_non = matching_similarity - non_matching_similarity
partial_vs_non = partial_similarity - non_matching_similarity
print(f"Matching vs Partial: {colored(f'{match_vs_partial:>8.3f}', 'blue')}")
print(f"Matching vs Non-Match: {colored(f'{match_vs_non:>8.3f}', 'blue')}")
print(f"Partial vs Non-Match: {colored(f'{partial_vs_non:>8.3f}', 'blue')}")
# Discrimination ratios
print("\nDiscrimination Ratios:")
match_partial_ratio = matching_similarity / max(partial_similarity, 0.001)
match_non_ratio = matching_similarity / max(non_matching_similarity, 0.001)
ratio_color = "green" if match_partial_ratio > 1.5 else "yellow" if match_partial_ratio > 1.2 else "red"
print(f"Matching/Partial Ratio: {colored(f'{match_partial_ratio:>8.2f}x', ratio_color)}")
ratio_color = "green" if match_non_ratio > 2.0 else "yellow" if match_non_ratio > 1.5 else "red"
print(f"Matching/Non-Match Ratio:{colored(f'{match_non_ratio:>8.2f}x', ratio_color)}")
# Quality assessment
print("\nModel Quality Assessment:")
print("-" * 40)
discrimination_score = (match_vs_partial + match_vs_non) / 2
discrimination_color = "green" if discrimination_score > 0.3 else \
"yellow" if discrimination_score > 0.2 else "red"
print(f"Discrimination Score: {colored(f'{discrimination_score:.3f}', discrimination_color)}")
if discrimination_score > 0.3:
print("Model shows good discrimination between candidate types")
elif discrimination_score > 0.2:
print("Model shows moderate discrimination - may need tuning")
else:
print("Model shows poor discrimination - consider adjusting weights or thresholds")
def run_comparison_tests(job_encoder, seeker_encoder, legacy_encoder):
"""Run tests comparing new field-specific vs legacy approach"""
print("\nRunning comparison tests between field-specific and legacy approaches...")
# Get test data
(job_posting, matching_seeker, matching_info,
partial_matching_seeker, partial_matching_info,
non_matching_seeker, non_matching_info) = create_test_data()
# Test new field-specific approach
print("\n" + "="*80)
print("TESTING FIELD-SPECIFIC APPROACH")
print("="*80)
manager = EmbeddingManager(job_encoder, seeker_encoder)
run_model_comparison_tests(manager)
# Test legacy approach
print("\n" + "="*80)
print("TESTING LEGACY APPROACH")
print("="*80)
# Create legacy embeddings
print("\nGenerating legacy embeddings...")
job_emb = legacy_encoder.encode_jobposting(job_posting)
match_emb = legacy_encoder.encode_jobseeker(matching_seeker, matching_info)
partial_emb = legacy_encoder.encode_jobseeker(partial_matching_seeker, partial_matching_info)
non_match_emb = legacy_encoder.encode_jobseeker(non_matching_seeker, non_matching_info)
print("\nCalculating legacy similarities...")
def calc_legacy_sim(emb1, emb2):
"""Calculate cosine similarity between two embeddings"""
# Ensure embeddings are normalized
emb1_norm = emb1 / (np.linalg.norm(emb1) + 1e-9)
emb2_norm = emb2 / (np.linalg.norm(emb2) + 1e-9)
# Calculate cosine similarity
sim = np.dot(emb1_norm, emb2_norm)
# Debug prints
print(f"DEBUG: Embedding norms: {np.linalg.norm(emb1):.3f}, {np.linalg.norm(emb2):.3f}")
print(f"DEBUG: Raw similarity: {sim:.3f}")
return sim
# Calculate similarities with extra debug info
print("\nMatching candidate:")
match_sim = (calc_legacy_sim(job_emb, match_emb) + 1) / 2
print("\nPartial matching candidate:")
partial_sim = (calc_legacy_sim(job_emb, partial_emb) + 1) / 2
print("\nNon-matching candidate:")
non_match_sim = (calc_legacy_sim(job_emb, non_match_emb) + 1) / 2
print(f"\nLegacy Approach Results:")
print(f"Job embedding shape: {job_emb.shape}")
print(f"Matching embedding shape: {match_emb.shape}")
print(f"Matching candidate similarity: {match_sim:.3f}")
print(f"Partial matching similarity: {partial_sim:.3f}")
print(f"Non-matching similarity: {non_match_sim:.3f}")
print("\nLegacy Discrimination Analysis:")
print(f"Match vs Partial diff: {(match_sim - partial_sim):.3f}")
print(f"Match vs Non-match diff: {(match_sim - non_match_sim):.3f}")
print(f"Match/Non-match ratio: {(match_sim / non_match_sim):.2f}x")
# Compare embedding statistics
print("\nEmbedding Statistics:")
print(f"Job embedding mean/std: {np.mean(job_emb):.3f}/{np.std(job_emb):.3f}")
print(f"Match embedding mean/std: {np.mean(match_emb):.3f}/{np.std(match_emb):.3f}")
print(f"Partial embedding mean/std: {np.mean(partial_emb):.3f}/{np.std(partial_emb):.3f}")
print(f"Non-match embedding mean/std: {np.mean(non_match_emb):.3f}/{np.std(non_match_emb):.3f}")
def main():
"""Main test function with both approaches"""
print("Creating encoders...")
# Get both encoders for the field-specific approach
field_encoder, seeker_encoder = create_encoders('all-mpnet-base-v2')
# Create legacy encoder using local Qwen2
legacy_encoder = LegacyFieldEncoder("/Users/sebastian_a/jobposting-embedding")
# Pass both encoders to comparison
run_comparison_tests(field_encoder, seeker_encoder, legacy_encoder)
if __name__ == "__main__":
main()