File size: 25,460 Bytes
24cbc73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
2023-10-19 03:28:58,589 ----------------------------------------------------------------------------------------------------
2023-10-19 03:28:58,590 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(31103, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=81, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-19 03:28:58,590 ----------------------------------------------------------------------------------------------------
2023-10-19 03:28:58,590 Corpus: 6900 train + 1576 dev + 1833 test sentences
2023-10-19 03:28:58,591 ----------------------------------------------------------------------------------------------------
2023-10-19 03:28:58,591 Train:  6900 sentences
2023-10-19 03:28:58,591         (train_with_dev=False, train_with_test=False)
2023-10-19 03:28:58,591 ----------------------------------------------------------------------------------------------------
2023-10-19 03:28:58,591 Training Params:
2023-10-19 03:28:58,591  - learning_rate: "5e-05" 
2023-10-19 03:28:58,591  - mini_batch_size: "16"
2023-10-19 03:28:58,591  - max_epochs: "10"
2023-10-19 03:28:58,591  - shuffle: "True"
2023-10-19 03:28:58,591 ----------------------------------------------------------------------------------------------------
2023-10-19 03:28:58,591 Plugins:
2023-10-19 03:28:58,591  - TensorboardLogger
2023-10-19 03:28:58,591  - LinearScheduler | warmup_fraction: '0.1'
2023-10-19 03:28:58,591 ----------------------------------------------------------------------------------------------------
2023-10-19 03:28:58,591 Final evaluation on model from best epoch (best-model.pt)
2023-10-19 03:28:58,591  - metric: "('micro avg', 'f1-score')"
2023-10-19 03:28:58,591 ----------------------------------------------------------------------------------------------------
2023-10-19 03:28:58,591 Computation:
2023-10-19 03:28:58,592  - compute on device: cuda:0
2023-10-19 03:28:58,592  - embedding storage: none
2023-10-19 03:28:58,592 ----------------------------------------------------------------------------------------------------
2023-10-19 03:28:58,592 Model training base path: "autotrain-flair-mobie-gbert_base-bs16-e10-lr5e-05-5"
2023-10-19 03:28:58,592 ----------------------------------------------------------------------------------------------------
2023-10-19 03:28:58,592 ----------------------------------------------------------------------------------------------------
2023-10-19 03:28:58,592 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-19 03:29:11,756 epoch 1 - iter 43/432 - loss 4.47089142 - time (sec): 13.16 - samples/sec: 462.75 - lr: 0.000005 - momentum: 0.000000
2023-10-19 03:29:26,354 epoch 1 - iter 86/432 - loss 3.40687789 - time (sec): 27.76 - samples/sec: 449.44 - lr: 0.000010 - momentum: 0.000000
2023-10-19 03:29:40,695 epoch 1 - iter 129/432 - loss 2.81984328 - time (sec): 42.10 - samples/sec: 453.89 - lr: 0.000015 - momentum: 0.000000
2023-10-19 03:29:54,625 epoch 1 - iter 172/432 - loss 2.48664817 - time (sec): 56.03 - samples/sec: 446.05 - lr: 0.000020 - momentum: 0.000000
2023-10-19 03:30:09,101 epoch 1 - iter 215/432 - loss 2.20938885 - time (sec): 70.51 - samples/sec: 442.36 - lr: 0.000025 - momentum: 0.000000
2023-10-19 03:30:23,495 epoch 1 - iter 258/432 - loss 2.00682608 - time (sec): 84.90 - samples/sec: 442.49 - lr: 0.000030 - momentum: 0.000000
2023-10-19 03:30:38,275 epoch 1 - iter 301/432 - loss 1.83000069 - time (sec): 99.68 - samples/sec: 439.34 - lr: 0.000035 - momentum: 0.000000
2023-10-19 03:30:52,684 epoch 1 - iter 344/432 - loss 1.69649278 - time (sec): 114.09 - samples/sec: 437.00 - lr: 0.000040 - momentum: 0.000000
2023-10-19 03:31:07,161 epoch 1 - iter 387/432 - loss 1.59029602 - time (sec): 128.57 - samples/sec: 433.05 - lr: 0.000045 - momentum: 0.000000
2023-10-19 03:31:22,191 epoch 1 - iter 430/432 - loss 1.48899645 - time (sec): 143.60 - samples/sec: 428.42 - lr: 0.000050 - momentum: 0.000000
2023-10-19 03:31:22,823 ----------------------------------------------------------------------------------------------------
2023-10-19 03:31:22,823 EPOCH 1 done: loss 1.4847 - lr: 0.000050
2023-10-19 03:31:35,250 DEV : loss 0.46572113037109375 - f1-score (micro avg)  0.7239
2023-10-19 03:31:35,274 saving best model
2023-10-19 03:31:35,705 ----------------------------------------------------------------------------------------------------
2023-10-19 03:31:49,420 epoch 2 - iter 43/432 - loss 0.47787826 - time (sec): 13.71 - samples/sec: 428.87 - lr: 0.000049 - momentum: 0.000000
2023-10-19 03:32:02,986 epoch 2 - iter 86/432 - loss 0.46422594 - time (sec): 27.28 - samples/sec: 444.51 - lr: 0.000049 - momentum: 0.000000
2023-10-19 03:32:17,113 epoch 2 - iter 129/432 - loss 0.47090059 - time (sec): 41.41 - samples/sec: 450.56 - lr: 0.000048 - momentum: 0.000000
2023-10-19 03:32:30,939 epoch 2 - iter 172/432 - loss 0.46448888 - time (sec): 55.23 - samples/sec: 446.35 - lr: 0.000048 - momentum: 0.000000
2023-10-19 03:32:45,263 epoch 2 - iter 215/432 - loss 0.45313238 - time (sec): 69.56 - samples/sec: 444.26 - lr: 0.000047 - momentum: 0.000000
2023-10-19 03:32:58,608 epoch 2 - iter 258/432 - loss 0.44160239 - time (sec): 82.90 - samples/sec: 450.48 - lr: 0.000047 - momentum: 0.000000
2023-10-19 03:33:13,377 epoch 2 - iter 301/432 - loss 0.43407568 - time (sec): 97.67 - samples/sec: 443.48 - lr: 0.000046 - momentum: 0.000000
2023-10-19 03:33:27,360 epoch 2 - iter 344/432 - loss 0.42190457 - time (sec): 111.65 - samples/sec: 443.35 - lr: 0.000046 - momentum: 0.000000
2023-10-19 03:33:41,325 epoch 2 - iter 387/432 - loss 0.41622439 - time (sec): 125.62 - samples/sec: 439.91 - lr: 0.000045 - momentum: 0.000000
2023-10-19 03:33:55,134 epoch 2 - iter 430/432 - loss 0.40436365 - time (sec): 139.43 - samples/sec: 442.06 - lr: 0.000044 - momentum: 0.000000
2023-10-19 03:33:55,654 ----------------------------------------------------------------------------------------------------
2023-10-19 03:33:55,654 EPOCH 2 done: loss 0.4050 - lr: 0.000044
2023-10-19 03:34:08,178 DEV : loss 0.3259238302707672 - f1-score (micro avg)  0.7826
2023-10-19 03:34:08,202 saving best model
2023-10-19 03:34:09,461 ----------------------------------------------------------------------------------------------------
2023-10-19 03:34:23,428 epoch 3 - iter 43/432 - loss 0.28190490 - time (sec): 13.97 - samples/sec: 452.84 - lr: 0.000044 - momentum: 0.000000
2023-10-19 03:34:36,562 epoch 3 - iter 86/432 - loss 0.26687223 - time (sec): 27.10 - samples/sec: 450.04 - lr: 0.000043 - momentum: 0.000000
2023-10-19 03:34:51,195 epoch 3 - iter 129/432 - loss 0.26449528 - time (sec): 41.73 - samples/sec: 441.48 - lr: 0.000043 - momentum: 0.000000
2023-10-19 03:35:05,122 epoch 3 - iter 172/432 - loss 0.25665322 - time (sec): 55.66 - samples/sec: 439.37 - lr: 0.000042 - momentum: 0.000000
2023-10-19 03:35:19,292 epoch 3 - iter 215/432 - loss 0.25287570 - time (sec): 69.83 - samples/sec: 439.23 - lr: 0.000042 - momentum: 0.000000
2023-10-19 03:35:34,052 epoch 3 - iter 258/432 - loss 0.24910280 - time (sec): 84.59 - samples/sec: 438.36 - lr: 0.000041 - momentum: 0.000000
2023-10-19 03:35:48,084 epoch 3 - iter 301/432 - loss 0.25157812 - time (sec): 98.62 - samples/sec: 438.86 - lr: 0.000041 - momentum: 0.000000
2023-10-19 03:36:02,258 epoch 3 - iter 344/432 - loss 0.25377885 - time (sec): 112.80 - samples/sec: 439.87 - lr: 0.000040 - momentum: 0.000000
2023-10-19 03:36:15,813 epoch 3 - iter 387/432 - loss 0.25537236 - time (sec): 126.35 - samples/sec: 440.41 - lr: 0.000039 - momentum: 0.000000
2023-10-19 03:36:30,192 epoch 3 - iter 430/432 - loss 0.25493575 - time (sec): 140.73 - samples/sec: 438.13 - lr: 0.000039 - momentum: 0.000000
2023-10-19 03:36:30,621 ----------------------------------------------------------------------------------------------------
2023-10-19 03:36:30,621 EPOCH 3 done: loss 0.2546 - lr: 0.000039
2023-10-19 03:36:42,948 DEV : loss 0.3176376521587372 - f1-score (micro avg)  0.8099
2023-10-19 03:36:42,972 saving best model
2023-10-19 03:36:44,252 ----------------------------------------------------------------------------------------------------
2023-10-19 03:36:58,581 epoch 4 - iter 43/432 - loss 0.16639809 - time (sec): 14.33 - samples/sec: 429.53 - lr: 0.000038 - momentum: 0.000000
2023-10-19 03:37:12,557 epoch 4 - iter 86/432 - loss 0.16046383 - time (sec): 28.30 - samples/sec: 449.63 - lr: 0.000038 - momentum: 0.000000
2023-10-19 03:37:25,777 epoch 4 - iter 129/432 - loss 0.16293076 - time (sec): 41.52 - samples/sec: 454.44 - lr: 0.000037 - momentum: 0.000000
2023-10-19 03:37:38,639 epoch 4 - iter 172/432 - loss 0.17169823 - time (sec): 54.39 - samples/sec: 458.05 - lr: 0.000037 - momentum: 0.000000
2023-10-19 03:37:52,354 epoch 4 - iter 215/432 - loss 0.17568654 - time (sec): 68.10 - samples/sec: 455.30 - lr: 0.000036 - momentum: 0.000000
2023-10-19 03:38:05,210 epoch 4 - iter 258/432 - loss 0.17539204 - time (sec): 80.96 - samples/sec: 459.20 - lr: 0.000036 - momentum: 0.000000
2023-10-19 03:38:19,129 epoch 4 - iter 301/432 - loss 0.17616913 - time (sec): 94.88 - samples/sec: 454.33 - lr: 0.000035 - momentum: 0.000000
2023-10-19 03:38:32,506 epoch 4 - iter 344/432 - loss 0.17582288 - time (sec): 108.25 - samples/sec: 453.92 - lr: 0.000034 - momentum: 0.000000
2023-10-19 03:38:46,863 epoch 4 - iter 387/432 - loss 0.17865856 - time (sec): 122.61 - samples/sec: 449.89 - lr: 0.000034 - momentum: 0.000000
2023-10-19 03:39:00,675 epoch 4 - iter 430/432 - loss 0.18280202 - time (sec): 136.42 - samples/sec: 450.86 - lr: 0.000033 - momentum: 0.000000
2023-10-19 03:39:01,048 ----------------------------------------------------------------------------------------------------
2023-10-19 03:39:01,048 EPOCH 4 done: loss 0.1824 - lr: 0.000033
2023-10-19 03:39:12,966 DEV : loss 0.29886704683303833 - f1-score (micro avg)  0.8234
2023-10-19 03:39:12,991 saving best model
2023-10-19 03:39:14,266 ----------------------------------------------------------------------------------------------------
2023-10-19 03:39:28,400 epoch 5 - iter 43/432 - loss 0.11682448 - time (sec): 14.13 - samples/sec: 461.41 - lr: 0.000033 - momentum: 0.000000
2023-10-19 03:39:42,804 epoch 5 - iter 86/432 - loss 0.12275492 - time (sec): 28.54 - samples/sec: 444.72 - lr: 0.000032 - momentum: 0.000000
2023-10-19 03:39:56,165 epoch 5 - iter 129/432 - loss 0.12609206 - time (sec): 41.90 - samples/sec: 441.07 - lr: 0.000032 - momentum: 0.000000
2023-10-19 03:40:09,952 epoch 5 - iter 172/432 - loss 0.12711545 - time (sec): 55.69 - samples/sec: 446.73 - lr: 0.000031 - momentum: 0.000000
2023-10-19 03:40:22,923 epoch 5 - iter 215/432 - loss 0.12886348 - time (sec): 68.66 - samples/sec: 448.19 - lr: 0.000031 - momentum: 0.000000
2023-10-19 03:40:36,641 epoch 5 - iter 258/432 - loss 0.12845048 - time (sec): 82.37 - samples/sec: 449.42 - lr: 0.000030 - momentum: 0.000000
2023-10-19 03:40:50,351 epoch 5 - iter 301/432 - loss 0.12913153 - time (sec): 96.08 - samples/sec: 446.05 - lr: 0.000029 - momentum: 0.000000
2023-10-19 03:41:04,628 epoch 5 - iter 344/432 - loss 0.12936027 - time (sec): 110.36 - samples/sec: 445.78 - lr: 0.000029 - momentum: 0.000000
2023-10-19 03:41:19,188 epoch 5 - iter 387/432 - loss 0.13265379 - time (sec): 124.92 - samples/sec: 443.12 - lr: 0.000028 - momentum: 0.000000
2023-10-19 03:41:32,431 epoch 5 - iter 430/432 - loss 0.13736553 - time (sec): 138.16 - samples/sec: 445.95 - lr: 0.000028 - momentum: 0.000000
2023-10-19 03:41:32,872 ----------------------------------------------------------------------------------------------------
2023-10-19 03:41:32,872 EPOCH 5 done: loss 0.1372 - lr: 0.000028
2023-10-19 03:41:44,920 DEV : loss 0.3204568028450012 - f1-score (micro avg)  0.8314
2023-10-19 03:41:44,948 saving best model
2023-10-19 03:41:46,214 ----------------------------------------------------------------------------------------------------
2023-10-19 03:41:59,586 epoch 6 - iter 43/432 - loss 0.09314269 - time (sec): 13.37 - samples/sec: 447.56 - lr: 0.000027 - momentum: 0.000000
2023-10-19 03:42:13,450 epoch 6 - iter 86/432 - loss 0.09075584 - time (sec): 27.23 - samples/sec: 437.57 - lr: 0.000027 - momentum: 0.000000
2023-10-19 03:42:27,171 epoch 6 - iter 129/432 - loss 0.09591164 - time (sec): 40.95 - samples/sec: 448.35 - lr: 0.000026 - momentum: 0.000000
2023-10-19 03:42:40,635 epoch 6 - iter 172/432 - loss 0.09597865 - time (sec): 54.42 - samples/sec: 454.58 - lr: 0.000026 - momentum: 0.000000
2023-10-19 03:42:54,660 epoch 6 - iter 215/432 - loss 0.09909182 - time (sec): 68.44 - samples/sec: 450.91 - lr: 0.000025 - momentum: 0.000000
2023-10-19 03:43:09,178 epoch 6 - iter 258/432 - loss 0.10174570 - time (sec): 82.96 - samples/sec: 444.40 - lr: 0.000024 - momentum: 0.000000
2023-10-19 03:43:23,824 epoch 6 - iter 301/432 - loss 0.10046164 - time (sec): 97.61 - samples/sec: 437.85 - lr: 0.000024 - momentum: 0.000000
2023-10-19 03:43:36,945 epoch 6 - iter 344/432 - loss 0.10000466 - time (sec): 110.73 - samples/sec: 443.92 - lr: 0.000023 - momentum: 0.000000
2023-10-19 03:43:51,453 epoch 6 - iter 387/432 - loss 0.10122306 - time (sec): 125.24 - samples/sec: 443.84 - lr: 0.000023 - momentum: 0.000000
2023-10-19 03:44:05,912 epoch 6 - iter 430/432 - loss 0.10223935 - time (sec): 139.70 - samples/sec: 441.20 - lr: 0.000022 - momentum: 0.000000
2023-10-19 03:44:06,379 ----------------------------------------------------------------------------------------------------
2023-10-19 03:44:06,380 EPOCH 6 done: loss 0.1020 - lr: 0.000022
2023-10-19 03:44:19,759 DEV : loss 0.33529824018478394 - f1-score (micro avg)  0.8401
2023-10-19 03:44:19,784 saving best model
2023-10-19 03:44:21,049 ----------------------------------------------------------------------------------------------------
2023-10-19 03:44:36,276 epoch 7 - iter 43/432 - loss 0.07203442 - time (sec): 15.23 - samples/sec: 412.93 - lr: 0.000022 - momentum: 0.000000
2023-10-19 03:44:51,038 epoch 7 - iter 86/432 - loss 0.07103726 - time (sec): 29.99 - samples/sec: 414.67 - lr: 0.000021 - momentum: 0.000000
2023-10-19 03:45:05,416 epoch 7 - iter 129/432 - loss 0.06899312 - time (sec): 44.37 - samples/sec: 415.88 - lr: 0.000021 - momentum: 0.000000
2023-10-19 03:45:20,795 epoch 7 - iter 172/432 - loss 0.07194985 - time (sec): 59.75 - samples/sec: 415.65 - lr: 0.000020 - momentum: 0.000000
2023-10-19 03:45:34,874 epoch 7 - iter 215/432 - loss 0.07052196 - time (sec): 73.82 - samples/sec: 417.57 - lr: 0.000019 - momentum: 0.000000
2023-10-19 03:45:49,995 epoch 7 - iter 258/432 - loss 0.07040585 - time (sec): 88.94 - samples/sec: 415.72 - lr: 0.000019 - momentum: 0.000000
2023-10-19 03:46:04,708 epoch 7 - iter 301/432 - loss 0.07018022 - time (sec): 103.66 - samples/sec: 419.87 - lr: 0.000018 - momentum: 0.000000
2023-10-19 03:46:19,073 epoch 7 - iter 344/432 - loss 0.07150833 - time (sec): 118.02 - samples/sec: 419.32 - lr: 0.000018 - momentum: 0.000000
2023-10-19 03:46:33,525 epoch 7 - iter 387/432 - loss 0.07349951 - time (sec): 132.47 - samples/sec: 418.40 - lr: 0.000017 - momentum: 0.000000
2023-10-19 03:46:48,302 epoch 7 - iter 430/432 - loss 0.07369037 - time (sec): 147.25 - samples/sec: 419.18 - lr: 0.000017 - momentum: 0.000000
2023-10-19 03:46:49,000 ----------------------------------------------------------------------------------------------------
2023-10-19 03:46:49,000 EPOCH 7 done: loss 0.0738 - lr: 0.000017
2023-10-19 03:47:01,924 DEV : loss 0.34933581948280334 - f1-score (micro avg)  0.8467
2023-10-19 03:47:01,948 saving best model
2023-10-19 03:47:03,222 ----------------------------------------------------------------------------------------------------
2023-10-19 03:47:17,090 epoch 8 - iter 43/432 - loss 0.05716144 - time (sec): 13.87 - samples/sec: 440.63 - lr: 0.000016 - momentum: 0.000000
2023-10-19 03:47:32,144 epoch 8 - iter 86/432 - loss 0.05847175 - time (sec): 28.92 - samples/sec: 406.80 - lr: 0.000016 - momentum: 0.000000
2023-10-19 03:47:47,486 epoch 8 - iter 129/432 - loss 0.05964240 - time (sec): 44.26 - samples/sec: 406.24 - lr: 0.000015 - momentum: 0.000000
2023-10-19 03:48:01,911 epoch 8 - iter 172/432 - loss 0.05753793 - time (sec): 58.69 - samples/sec: 420.36 - lr: 0.000014 - momentum: 0.000000
2023-10-19 03:48:16,435 epoch 8 - iter 215/432 - loss 0.05591410 - time (sec): 73.21 - samples/sec: 417.99 - lr: 0.000014 - momentum: 0.000000
2023-10-19 03:48:31,234 epoch 8 - iter 258/432 - loss 0.05596529 - time (sec): 88.01 - samples/sec: 417.49 - lr: 0.000013 - momentum: 0.000000
2023-10-19 03:48:46,757 epoch 8 - iter 301/432 - loss 0.05651818 - time (sec): 103.53 - samples/sec: 415.10 - lr: 0.000013 - momentum: 0.000000
2023-10-19 03:49:01,544 epoch 8 - iter 344/432 - loss 0.05762473 - time (sec): 118.32 - samples/sec: 416.82 - lr: 0.000012 - momentum: 0.000000
2023-10-19 03:49:15,864 epoch 8 - iter 387/432 - loss 0.05808607 - time (sec): 132.64 - samples/sec: 418.46 - lr: 0.000012 - momentum: 0.000000
2023-10-19 03:49:31,049 epoch 8 - iter 430/432 - loss 0.05758731 - time (sec): 147.83 - samples/sec: 416.94 - lr: 0.000011 - momentum: 0.000000
2023-10-19 03:49:31,826 ----------------------------------------------------------------------------------------------------
2023-10-19 03:49:31,826 EPOCH 8 done: loss 0.0578 - lr: 0.000011
2023-10-19 03:49:44,970 DEV : loss 0.38339680433273315 - f1-score (micro avg)  0.8393
2023-10-19 03:49:44,995 ----------------------------------------------------------------------------------------------------
2023-10-19 03:49:59,204 epoch 9 - iter 43/432 - loss 0.03477718 - time (sec): 14.21 - samples/sec: 433.13 - lr: 0.000011 - momentum: 0.000000
2023-10-19 03:50:14,060 epoch 9 - iter 86/432 - loss 0.03916332 - time (sec): 29.06 - samples/sec: 431.15 - lr: 0.000010 - momentum: 0.000000
2023-10-19 03:50:27,952 epoch 9 - iter 129/432 - loss 0.03614330 - time (sec): 42.96 - samples/sec: 437.68 - lr: 0.000009 - momentum: 0.000000
2023-10-19 03:50:42,814 epoch 9 - iter 172/432 - loss 0.03823699 - time (sec): 57.82 - samples/sec: 436.70 - lr: 0.000009 - momentum: 0.000000
2023-10-19 03:50:57,585 epoch 9 - iter 215/432 - loss 0.03949486 - time (sec): 72.59 - samples/sec: 427.62 - lr: 0.000008 - momentum: 0.000000
2023-10-19 03:51:12,290 epoch 9 - iter 258/432 - loss 0.04255173 - time (sec): 87.29 - samples/sec: 426.32 - lr: 0.000008 - momentum: 0.000000
2023-10-19 03:51:27,273 epoch 9 - iter 301/432 - loss 0.04281995 - time (sec): 102.28 - samples/sec: 424.55 - lr: 0.000007 - momentum: 0.000000
2023-10-19 03:51:41,879 epoch 9 - iter 344/432 - loss 0.04288552 - time (sec): 116.88 - samples/sec: 422.87 - lr: 0.000007 - momentum: 0.000000
2023-10-19 03:51:57,269 epoch 9 - iter 387/432 - loss 0.04340112 - time (sec): 132.27 - samples/sec: 420.18 - lr: 0.000006 - momentum: 0.000000
2023-10-19 03:52:12,096 epoch 9 - iter 430/432 - loss 0.04288897 - time (sec): 147.10 - samples/sec: 418.86 - lr: 0.000006 - momentum: 0.000000
2023-10-19 03:52:12,574 ----------------------------------------------------------------------------------------------------
2023-10-19 03:52:12,574 EPOCH 9 done: loss 0.0429 - lr: 0.000006
2023-10-19 03:52:25,616 DEV : loss 0.4035045802593231 - f1-score (micro avg)  0.8476
2023-10-19 03:52:25,641 saving best model
2023-10-19 03:52:27,667 ----------------------------------------------------------------------------------------------------
2023-10-19 03:52:41,579 epoch 10 - iter 43/432 - loss 0.02320239 - time (sec): 13.91 - samples/sec: 431.98 - lr: 0.000005 - momentum: 0.000000
2023-10-19 03:52:56,667 epoch 10 - iter 86/432 - loss 0.02686951 - time (sec): 29.00 - samples/sec: 410.53 - lr: 0.000004 - momentum: 0.000000
2023-10-19 03:53:10,356 epoch 10 - iter 129/432 - loss 0.02767008 - time (sec): 42.69 - samples/sec: 426.65 - lr: 0.000004 - momentum: 0.000000
2023-10-19 03:53:25,523 epoch 10 - iter 172/432 - loss 0.02995656 - time (sec): 57.85 - samples/sec: 433.48 - lr: 0.000003 - momentum: 0.000000
2023-10-19 03:53:40,267 epoch 10 - iter 215/432 - loss 0.03134205 - time (sec): 72.60 - samples/sec: 431.03 - lr: 0.000003 - momentum: 0.000000
2023-10-19 03:53:55,194 epoch 10 - iter 258/432 - loss 0.03131445 - time (sec): 87.53 - samples/sec: 426.60 - lr: 0.000002 - momentum: 0.000000
2023-10-19 03:54:08,818 epoch 10 - iter 301/432 - loss 0.03184536 - time (sec): 101.15 - samples/sec: 428.50 - lr: 0.000002 - momentum: 0.000000
2023-10-19 03:54:23,364 epoch 10 - iter 344/432 - loss 0.03434134 - time (sec): 115.70 - samples/sec: 428.91 - lr: 0.000001 - momentum: 0.000000
2023-10-19 03:54:37,614 epoch 10 - iter 387/432 - loss 0.03405121 - time (sec): 129.95 - samples/sec: 426.70 - lr: 0.000001 - momentum: 0.000000
2023-10-19 03:54:50,631 epoch 10 - iter 430/432 - loss 0.03334862 - time (sec): 142.96 - samples/sec: 431.18 - lr: 0.000000 - momentum: 0.000000
2023-10-19 03:54:51,170 ----------------------------------------------------------------------------------------------------
2023-10-19 03:54:51,170 EPOCH 10 done: loss 0.0333 - lr: 0.000000
2023-10-19 03:55:03,307 DEV : loss 0.41629332304000854 - f1-score (micro avg)  0.8463
2023-10-19 03:55:03,786 ----------------------------------------------------------------------------------------------------
2023-10-19 03:55:03,787 Loading model from best epoch ...
2023-10-19 03:55:06,502 SequenceTagger predicts: Dictionary with 81 tags: O, S-location-route, B-location-route, E-location-route, I-location-route, S-location-stop, B-location-stop, E-location-stop, I-location-stop, S-trigger, B-trigger, E-trigger, I-trigger, S-organization-company, B-organization-company, E-organization-company, I-organization-company, S-location-city, B-location-city, E-location-city, I-location-city, S-location, B-location, E-location, I-location, S-event-cause, B-event-cause, E-event-cause, I-event-cause, S-location-street, B-location-street, E-location-street, I-location-street, S-time, B-time, E-time, I-time, S-date, B-date, E-date, I-date, S-number, B-number, E-number, I-number, S-duration, B-duration, E-duration, I-duration, S-organization
2023-10-19 03:55:22,259 
Results:
- F-score (micro) 0.7689
- F-score (macro) 0.5855
- Accuracy 0.6696

By class:
                      precision    recall  f1-score   support

       location-stop     0.8735    0.8392    0.8560       765
             trigger     0.7202    0.5654    0.6335       833
            location     0.7834    0.8376    0.8096       665
       location-city     0.8197    0.8834    0.8503       566
                date     0.8877    0.8426    0.8646       394
     location-street     0.9356    0.8653    0.8991       386
                time     0.7944    0.8906    0.8398       256
      location-route     0.8525    0.7324    0.7879       284
organization-company     0.8191    0.6468    0.7228       252
            distance     1.0000    0.9940    0.9970       167
              number     0.6932    0.8188    0.7508       149
            duration     0.3533    0.3252    0.3387       163
         event-cause     0.0000    0.0000    0.0000         0
       disaster-type     0.8649    0.4638    0.6038        69
        organization     0.5714    0.5714    0.5714        28
              person     0.4500    0.9000    0.6000        10
                 set     0.0000    0.0000    0.0000         0
        org-position     0.0000    0.0000    0.0000         1
               money     0.0000    0.0000    0.0000         0

           micro avg     0.7694    0.7684    0.7689      4988
           macro avg     0.6010    0.5882    0.5855      4988
        weighted avg     0.8067    0.7684    0.7835      4988

2023-10-19 03:55:22,259 ----------------------------------------------------------------------------------------------------