Upload ./training.log with huggingface_hub
Browse files- training.log +246 -0
training.log
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-27 18:44:31,683 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-27 18:44:31,685 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): XLMRobertaModel(
|
5 |
+
(embeddings): XLMRobertaEmbeddings(
|
6 |
+
(word_embeddings): Embedding(250003, 1024)
|
7 |
+
(position_embeddings): Embedding(514, 1024, padding_idx=1)
|
8 |
+
(token_type_embeddings): Embedding(1, 1024)
|
9 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): XLMRobertaEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-23): 24 x XLMRobertaLayer(
|
15 |
+
(attention): XLMRobertaAttention(
|
16 |
+
(self): XLMRobertaSelfAttention(
|
17 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
18 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
19 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): XLMRobertaSelfOutput(
|
23 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): XLMRobertaIntermediate(
|
29 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): XLMRobertaOutput(
|
33 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): XLMRobertaPooler(
|
41 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=1024, out_features=17, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-27 18:44:31,685 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-27 18:44:31,685 Corpus: 14903 train + 3449 dev + 3658 test sentences
|
52 |
+
2023-10-27 18:44:31,685 ----------------------------------------------------------------------------------------------------
|
53 |
+
2023-10-27 18:44:31,685 Train: 14903 sentences
|
54 |
+
2023-10-27 18:44:31,685 (train_with_dev=False, train_with_test=False)
|
55 |
+
2023-10-27 18:44:31,685 ----------------------------------------------------------------------------------------------------
|
56 |
+
2023-10-27 18:44:31,685 Training Params:
|
57 |
+
2023-10-27 18:44:31,685 - learning_rate: "5e-06"
|
58 |
+
2023-10-27 18:44:31,685 - mini_batch_size: "4"
|
59 |
+
2023-10-27 18:44:31,685 - max_epochs: "10"
|
60 |
+
2023-10-27 18:44:31,685 - shuffle: "True"
|
61 |
+
2023-10-27 18:44:31,685 ----------------------------------------------------------------------------------------------------
|
62 |
+
2023-10-27 18:44:31,685 Plugins:
|
63 |
+
2023-10-27 18:44:31,685 - TensorboardLogger
|
64 |
+
2023-10-27 18:44:31,686 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-10-27 18:44:31,686 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-27 18:44:31,686 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-10-27 18:44:31,686 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-10-27 18:44:31,686 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-10-27 18:44:31,686 Computation:
|
70 |
+
2023-10-27 18:44:31,686 - compute on device: cuda:0
|
71 |
+
2023-10-27 18:44:31,686 - embedding storage: none
|
72 |
+
2023-10-27 18:44:31,686 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-27 18:44:31,686 Model training base path: "flair-clean-conll-lr5e-06-bs4-4"
|
74 |
+
2023-10-27 18:44:31,686 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-10-27 18:44:31,686 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-27 18:44:31,686 Logging anything other than scalars to TensorBoard is currently not supported.
|
77 |
+
2023-10-27 18:45:17,500 epoch 1 - iter 372/3726 - loss 2.56008396 - time (sec): 45.81 - samples/sec: 437.21 - lr: 0.000000 - momentum: 0.000000
|
78 |
+
2023-10-27 18:46:02,660 epoch 1 - iter 744/3726 - loss 1.77263965 - time (sec): 90.97 - samples/sec: 440.01 - lr: 0.000001 - momentum: 0.000000
|
79 |
+
2023-10-27 18:46:48,640 epoch 1 - iter 1116/3726 - loss 1.37087487 - time (sec): 136.95 - samples/sec: 443.33 - lr: 0.000001 - momentum: 0.000000
|
80 |
+
2023-10-27 18:47:34,220 epoch 1 - iter 1488/3726 - loss 1.13762799 - time (sec): 182.53 - samples/sec: 445.61 - lr: 0.000002 - momentum: 0.000000
|
81 |
+
2023-10-27 18:48:19,175 epoch 1 - iter 1860/3726 - loss 0.97055504 - time (sec): 227.49 - samples/sec: 446.76 - lr: 0.000002 - momentum: 0.000000
|
82 |
+
2023-10-27 18:49:04,645 epoch 1 - iter 2232/3726 - loss 0.83989727 - time (sec): 272.96 - samples/sec: 449.00 - lr: 0.000003 - momentum: 0.000000
|
83 |
+
2023-10-27 18:49:49,378 epoch 1 - iter 2604/3726 - loss 0.74197502 - time (sec): 317.69 - samples/sec: 450.38 - lr: 0.000003 - momentum: 0.000000
|
84 |
+
2023-10-27 18:50:34,930 epoch 1 - iter 2976/3726 - loss 0.66837341 - time (sec): 363.24 - samples/sec: 449.48 - lr: 0.000004 - momentum: 0.000000
|
85 |
+
2023-10-27 18:51:20,133 epoch 1 - iter 3348/3726 - loss 0.60924784 - time (sec): 408.45 - samples/sec: 448.31 - lr: 0.000004 - momentum: 0.000000
|
86 |
+
2023-10-27 18:52:08,456 epoch 1 - iter 3720/3726 - loss 0.55515076 - time (sec): 456.77 - samples/sec: 447.31 - lr: 0.000005 - momentum: 0.000000
|
87 |
+
2023-10-27 18:52:09,145 ----------------------------------------------------------------------------------------------------
|
88 |
+
2023-10-27 18:52:09,145 EPOCH 1 done: loss 0.5546 - lr: 0.000005
|
89 |
+
2023-10-27 18:52:30,774 DEV : loss 0.10047101974487305 - f1-score (micro avg) 0.931
|
90 |
+
2023-10-27 18:52:30,829 saving best model
|
91 |
+
2023-10-27 18:52:33,017 ----------------------------------------------------------------------------------------------------
|
92 |
+
2023-10-27 18:53:18,587 epoch 2 - iter 372/3726 - loss 0.11546777 - time (sec): 45.57 - samples/sec: 460.22 - lr: 0.000005 - momentum: 0.000000
|
93 |
+
2023-10-27 18:54:05,289 epoch 2 - iter 744/3726 - loss 0.10660754 - time (sec): 92.27 - samples/sec: 449.30 - lr: 0.000005 - momentum: 0.000000
|
94 |
+
2023-10-27 18:54:51,000 epoch 2 - iter 1116/3726 - loss 0.10038157 - time (sec): 137.98 - samples/sec: 455.34 - lr: 0.000005 - momentum: 0.000000
|
95 |
+
2023-10-27 18:55:36,869 epoch 2 - iter 1488/3726 - loss 0.09684308 - time (sec): 183.85 - samples/sec: 451.24 - lr: 0.000005 - momentum: 0.000000
|
96 |
+
2023-10-27 18:56:23,094 epoch 2 - iter 1860/3726 - loss 0.09806463 - time (sec): 230.07 - samples/sec: 450.98 - lr: 0.000005 - momentum: 0.000000
|
97 |
+
2023-10-27 18:57:08,793 epoch 2 - iter 2232/3726 - loss 0.09423182 - time (sec): 275.77 - samples/sec: 450.87 - lr: 0.000005 - momentum: 0.000000
|
98 |
+
2023-10-27 18:57:53,912 epoch 2 - iter 2604/3726 - loss 0.09270500 - time (sec): 320.89 - samples/sec: 452.25 - lr: 0.000005 - momentum: 0.000000
|
99 |
+
2023-10-27 18:58:39,792 epoch 2 - iter 2976/3726 - loss 0.08995641 - time (sec): 366.77 - samples/sec: 451.59 - lr: 0.000005 - momentum: 0.000000
|
100 |
+
2023-10-27 18:59:26,428 epoch 2 - iter 3348/3726 - loss 0.08720003 - time (sec): 413.41 - samples/sec: 447.43 - lr: 0.000005 - momentum: 0.000000
|
101 |
+
2023-10-27 19:00:11,611 epoch 2 - iter 3720/3726 - loss 0.08576854 - time (sec): 458.59 - samples/sec: 445.51 - lr: 0.000004 - momentum: 0.000000
|
102 |
+
2023-10-27 19:00:12,346 ----------------------------------------------------------------------------------------------------
|
103 |
+
2023-10-27 19:00:12,347 EPOCH 2 done: loss 0.0857 - lr: 0.000004
|
104 |
+
2023-10-27 19:00:35,384 DEV : loss 0.06790720671415329 - f1-score (micro avg) 0.9571
|
105 |
+
2023-10-27 19:00:35,438 saving best model
|
106 |
+
2023-10-27 19:00:37,853 ----------------------------------------------------------------------------------------------------
|
107 |
+
2023-10-27 19:01:23,535 epoch 3 - iter 372/3726 - loss 0.07374127 - time (sec): 45.68 - samples/sec: 439.85 - lr: 0.000004 - momentum: 0.000000
|
108 |
+
2023-10-27 19:02:08,846 epoch 3 - iter 744/3726 - loss 0.06087161 - time (sec): 90.99 - samples/sec: 440.33 - lr: 0.000004 - momentum: 0.000000
|
109 |
+
2023-10-27 19:02:54,176 epoch 3 - iter 1116/3726 - loss 0.05718760 - time (sec): 136.32 - samples/sec: 444.62 - lr: 0.000004 - momentum: 0.000000
|
110 |
+
2023-10-27 19:03:40,248 epoch 3 - iter 1488/3726 - loss 0.05400073 - time (sec): 182.39 - samples/sec: 447.02 - lr: 0.000004 - momentum: 0.000000
|
111 |
+
2023-10-27 19:04:26,095 epoch 3 - iter 1860/3726 - loss 0.05589718 - time (sec): 228.24 - samples/sec: 447.08 - lr: 0.000004 - momentum: 0.000000
|
112 |
+
2023-10-27 19:05:12,308 epoch 3 - iter 2232/3726 - loss 0.05415602 - time (sec): 274.45 - samples/sec: 445.29 - lr: 0.000004 - momentum: 0.000000
|
113 |
+
2023-10-27 19:05:58,644 epoch 3 - iter 2604/3726 - loss 0.05279672 - time (sec): 320.79 - samples/sec: 445.89 - lr: 0.000004 - momentum: 0.000000
|
114 |
+
2023-10-27 19:06:44,498 epoch 3 - iter 2976/3726 - loss 0.05148716 - time (sec): 366.64 - samples/sec: 446.33 - lr: 0.000004 - momentum: 0.000000
|
115 |
+
2023-10-27 19:07:29,887 epoch 3 - iter 3348/3726 - loss 0.05136170 - time (sec): 412.03 - samples/sec: 446.61 - lr: 0.000004 - momentum: 0.000000
|
116 |
+
2023-10-27 19:08:16,632 epoch 3 - iter 3720/3726 - loss 0.05145199 - time (sec): 458.78 - samples/sec: 445.53 - lr: 0.000004 - momentum: 0.000000
|
117 |
+
2023-10-27 19:08:17,367 ----------------------------------------------------------------------------------------------------
|
118 |
+
2023-10-27 19:08:17,367 EPOCH 3 done: loss 0.0514 - lr: 0.000004
|
119 |
+
2023-10-27 19:08:39,846 DEV : loss 0.052444763481616974 - f1-score (micro avg) 0.9626
|
120 |
+
2023-10-27 19:08:39,896 saving best model
|
121 |
+
2023-10-27 19:08:42,267 ----------------------------------------------------------------------------------------------------
|
122 |
+
2023-10-27 19:09:28,802 epoch 4 - iter 372/3726 - loss 0.03871254 - time (sec): 46.53 - samples/sec: 454.07 - lr: 0.000004 - momentum: 0.000000
|
123 |
+
2023-10-27 19:10:14,349 epoch 4 - iter 744/3726 - loss 0.04116213 - time (sec): 92.08 - samples/sec: 449.79 - lr: 0.000004 - momentum: 0.000000
|
124 |
+
2023-10-27 19:11:00,008 epoch 4 - iter 1116/3726 - loss 0.04020488 - time (sec): 137.74 - samples/sec: 454.42 - lr: 0.000004 - momentum: 0.000000
|
125 |
+
2023-10-27 19:11:45,448 epoch 4 - iter 1488/3726 - loss 0.04174189 - time (sec): 183.18 - samples/sec: 445.99 - lr: 0.000004 - momentum: 0.000000
|
126 |
+
2023-10-27 19:12:31,270 epoch 4 - iter 1860/3726 - loss 0.04211643 - time (sec): 229.00 - samples/sec: 444.26 - lr: 0.000004 - momentum: 0.000000
|
127 |
+
2023-10-27 19:13:16,951 epoch 4 - iter 2232/3726 - loss 0.04082069 - time (sec): 274.68 - samples/sec: 443.61 - lr: 0.000004 - momentum: 0.000000
|
128 |
+
2023-10-27 19:14:02,493 epoch 4 - iter 2604/3726 - loss 0.03901976 - time (sec): 320.22 - samples/sec: 446.31 - lr: 0.000004 - momentum: 0.000000
|
129 |
+
2023-10-27 19:14:48,002 epoch 4 - iter 2976/3726 - loss 0.03797498 - time (sec): 365.73 - samples/sec: 446.53 - lr: 0.000003 - momentum: 0.000000
|
130 |
+
2023-10-27 19:15:33,644 epoch 4 - iter 3348/3726 - loss 0.03778630 - time (sec): 411.37 - samples/sec: 445.67 - lr: 0.000003 - momentum: 0.000000
|
131 |
+
2023-10-27 19:16:19,632 epoch 4 - iter 3720/3726 - loss 0.03709369 - time (sec): 457.36 - samples/sec: 446.74 - lr: 0.000003 - momentum: 0.000000
|
132 |
+
2023-10-27 19:16:20,375 ----------------------------------------------------------------------------------------------------
|
133 |
+
2023-10-27 19:16:20,375 EPOCH 4 done: loss 0.0372 - lr: 0.000003
|
134 |
+
2023-10-27 19:16:43,692 DEV : loss 0.05450737103819847 - f1-score (micro avg) 0.9647
|
135 |
+
2023-10-27 19:16:43,745 saving best model
|
136 |
+
2023-10-27 19:16:46,767 ----------------------------------------------------------------------------------------------------
|
137 |
+
2023-10-27 19:17:32,579 epoch 5 - iter 372/3726 - loss 0.02845766 - time (sec): 45.81 - samples/sec: 459.66 - lr: 0.000003 - momentum: 0.000000
|
138 |
+
2023-10-27 19:18:18,467 epoch 5 - iter 744/3726 - loss 0.02421414 - time (sec): 91.70 - samples/sec: 448.91 - lr: 0.000003 - momentum: 0.000000
|
139 |
+
2023-10-27 19:19:04,523 epoch 5 - iter 1116/3726 - loss 0.02470444 - time (sec): 137.75 - samples/sec: 447.01 - lr: 0.000003 - momentum: 0.000000
|
140 |
+
2023-10-27 19:19:50,020 epoch 5 - iter 1488/3726 - loss 0.02877377 - time (sec): 183.25 - samples/sec: 446.70 - lr: 0.000003 - momentum: 0.000000
|
141 |
+
2023-10-27 19:20:35,406 epoch 5 - iter 1860/3726 - loss 0.02956343 - time (sec): 228.64 - samples/sec: 445.95 - lr: 0.000003 - momentum: 0.000000
|
142 |
+
2023-10-27 19:21:21,375 epoch 5 - iter 2232/3726 - loss 0.02911303 - time (sec): 274.61 - samples/sec: 444.00 - lr: 0.000003 - momentum: 0.000000
|
143 |
+
2023-10-27 19:22:06,761 epoch 5 - iter 2604/3726 - loss 0.02983439 - time (sec): 319.99 - samples/sec: 446.51 - lr: 0.000003 - momentum: 0.000000
|
144 |
+
2023-10-27 19:22:52,640 epoch 5 - iter 2976/3726 - loss 0.02953542 - time (sec): 365.87 - samples/sec: 447.29 - lr: 0.000003 - momentum: 0.000000
|
145 |
+
2023-10-27 19:23:37,972 epoch 5 - iter 3348/3726 - loss 0.02932321 - time (sec): 411.20 - samples/sec: 448.46 - lr: 0.000003 - momentum: 0.000000
|
146 |
+
2023-10-27 19:24:24,955 epoch 5 - iter 3720/3726 - loss 0.02916844 - time (sec): 458.19 - samples/sec: 445.99 - lr: 0.000003 - momentum: 0.000000
|
147 |
+
2023-10-27 19:24:25,687 ----------------------------------------------------------------------------------------------------
|
148 |
+
2023-10-27 19:24:25,688 EPOCH 5 done: loss 0.0292 - lr: 0.000003
|
149 |
+
2023-10-27 19:24:48,031 DEV : loss 0.05429258942604065 - f1-score (micro avg) 0.9647
|
150 |
+
2023-10-27 19:24:48,084 saving best model
|
151 |
+
2023-10-27 19:24:50,724 ----------------------------------------------------------------------------------------------------
|
152 |
+
2023-10-27 19:25:36,994 epoch 6 - iter 372/3726 - loss 0.01703796 - time (sec): 46.27 - samples/sec: 456.14 - lr: 0.000003 - momentum: 0.000000
|
153 |
+
2023-10-27 19:26:22,882 epoch 6 - iter 744/3726 - loss 0.02169011 - time (sec): 92.16 - samples/sec: 454.83 - lr: 0.000003 - momentum: 0.000000
|
154 |
+
2023-10-27 19:27:07,925 epoch 6 - iter 1116/3726 - loss 0.02127737 - time (sec): 137.20 - samples/sec: 451.49 - lr: 0.000003 - momentum: 0.000000
|
155 |
+
2023-10-27 19:27:53,410 epoch 6 - iter 1488/3726 - loss 0.02157007 - time (sec): 182.68 - samples/sec: 452.54 - lr: 0.000003 - momentum: 0.000000
|
156 |
+
2023-10-27 19:28:39,521 epoch 6 - iter 1860/3726 - loss 0.02169603 - time (sec): 228.79 - samples/sec: 449.67 - lr: 0.000003 - momentum: 0.000000
|
157 |
+
2023-10-27 19:29:24,934 epoch 6 - iter 2232/3726 - loss 0.02182002 - time (sec): 274.21 - samples/sec: 451.13 - lr: 0.000002 - momentum: 0.000000
|
158 |
+
2023-10-27 19:30:11,317 epoch 6 - iter 2604/3726 - loss 0.02225228 - time (sec): 320.59 - samples/sec: 448.74 - lr: 0.000002 - momentum: 0.000000
|
159 |
+
2023-10-27 19:30:56,485 epoch 6 - iter 2976/3726 - loss 0.02130458 - time (sec): 365.76 - samples/sec: 450.41 - lr: 0.000002 - momentum: 0.000000
|
160 |
+
2023-10-27 19:31:42,001 epoch 6 - iter 3348/3726 - loss 0.02151336 - time (sec): 411.28 - samples/sec: 448.25 - lr: 0.000002 - momentum: 0.000000
|
161 |
+
2023-10-27 19:32:28,009 epoch 6 - iter 3720/3726 - loss 0.02092486 - time (sec): 457.28 - samples/sec: 446.72 - lr: 0.000002 - momentum: 0.000000
|
162 |
+
2023-10-27 19:32:28,753 ----------------------------------------------------------------------------------------------------
|
163 |
+
2023-10-27 19:32:28,753 EPOCH 6 done: loss 0.0209 - lr: 0.000002
|
164 |
+
2023-10-27 19:32:52,231 DEV : loss 0.052240729331970215 - f1-score (micro avg) 0.9692
|
165 |
+
2023-10-27 19:32:52,286 saving best model
|
166 |
+
2023-10-27 19:32:55,357 ----------------------------------------------------------------------------------------------------
|
167 |
+
2023-10-27 19:33:41,068 epoch 7 - iter 372/3726 - loss 0.02108834 - time (sec): 45.71 - samples/sec: 450.92 - lr: 0.000002 - momentum: 0.000000
|
168 |
+
2023-10-27 19:34:26,441 epoch 7 - iter 744/3726 - loss 0.01802067 - time (sec): 91.08 - samples/sec: 447.77 - lr: 0.000002 - momentum: 0.000000
|
169 |
+
2023-10-27 19:35:12,147 epoch 7 - iter 1116/3726 - loss 0.01632005 - time (sec): 136.79 - samples/sec: 445.34 - lr: 0.000002 - momentum: 0.000000
|
170 |
+
2023-10-27 19:35:57,225 epoch 7 - iter 1488/3726 - loss 0.01518131 - time (sec): 181.87 - samples/sec: 444.13 - lr: 0.000002 - momentum: 0.000000
|
171 |
+
2023-10-27 19:36:42,626 epoch 7 - iter 1860/3726 - loss 0.01620599 - time (sec): 227.27 - samples/sec: 445.22 - lr: 0.000002 - momentum: 0.000000
|
172 |
+
2023-10-27 19:37:28,781 epoch 7 - iter 2232/3726 - loss 0.01630849 - time (sec): 273.42 - samples/sec: 446.32 - lr: 0.000002 - momentum: 0.000000
|
173 |
+
2023-10-27 19:38:14,783 epoch 7 - iter 2604/3726 - loss 0.01643476 - time (sec): 319.42 - samples/sec: 447.07 - lr: 0.000002 - momentum: 0.000000
|
174 |
+
2023-10-27 19:39:00,647 epoch 7 - iter 2976/3726 - loss 0.01586704 - time (sec): 365.29 - samples/sec: 447.99 - lr: 0.000002 - momentum: 0.000000
|
175 |
+
2023-10-27 19:39:46,421 epoch 7 - iter 3348/3726 - loss 0.01547939 - time (sec): 411.06 - samples/sec: 448.19 - lr: 0.000002 - momentum: 0.000000
|
176 |
+
2023-10-27 19:40:32,073 epoch 7 - iter 3720/3726 - loss 0.01513403 - time (sec): 456.71 - samples/sec: 447.41 - lr: 0.000002 - momentum: 0.000000
|
177 |
+
2023-10-27 19:40:32,785 ----------------------------------------------------------------------------------------------------
|
178 |
+
2023-10-27 19:40:32,785 EPOCH 7 done: loss 0.0151 - lr: 0.000002
|
179 |
+
2023-10-27 19:40:55,727 DEV : loss 0.050821226090192795 - f1-score (micro avg) 0.9714
|
180 |
+
2023-10-27 19:40:55,781 saving best model
|
181 |
+
2023-10-27 19:40:58,713 ----------------------------------------------------------------------------------------------------
|
182 |
+
2023-10-27 19:41:44,020 epoch 8 - iter 372/3726 - loss 0.01532970 - time (sec): 45.30 - samples/sec: 450.04 - lr: 0.000002 - momentum: 0.000000
|
183 |
+
2023-10-27 19:42:29,890 epoch 8 - iter 744/3726 - loss 0.01208467 - time (sec): 91.18 - samples/sec: 452.34 - lr: 0.000002 - momentum: 0.000000
|
184 |
+
2023-10-27 19:43:16,086 epoch 8 - iter 1116/3726 - loss 0.01337061 - time (sec): 137.37 - samples/sec: 446.08 - lr: 0.000002 - momentum: 0.000000
|
185 |
+
2023-10-27 19:44:02,334 epoch 8 - iter 1488/3726 - loss 0.01184764 - time (sec): 183.62 - samples/sec: 444.41 - lr: 0.000001 - momentum: 0.000000
|
186 |
+
2023-10-27 19:44:48,481 epoch 8 - iter 1860/3726 - loss 0.01162265 - time (sec): 229.77 - samples/sec: 444.22 - lr: 0.000001 - momentum: 0.000000
|
187 |
+
2023-10-27 19:45:33,897 epoch 8 - iter 2232/3726 - loss 0.01116723 - time (sec): 275.18 - samples/sec: 447.92 - lr: 0.000001 - momentum: 0.000000
|
188 |
+
2023-10-27 19:46:19,563 epoch 8 - iter 2604/3726 - loss 0.01237156 - time (sec): 320.85 - samples/sec: 448.45 - lr: 0.000001 - momentum: 0.000000
|
189 |
+
2023-10-27 19:47:06,257 epoch 8 - iter 2976/3726 - loss 0.01216515 - time (sec): 367.54 - samples/sec: 445.88 - lr: 0.000001 - momentum: 0.000000
|
190 |
+
2023-10-27 19:47:51,860 epoch 8 - iter 3348/3726 - loss 0.01228458 - time (sec): 413.15 - samples/sec: 445.41 - lr: 0.000001 - momentum: 0.000000
|
191 |
+
2023-10-27 19:48:37,302 epoch 8 - iter 3720/3726 - loss 0.01173645 - time (sec): 458.59 - samples/sec: 445.55 - lr: 0.000001 - momentum: 0.000000
|
192 |
+
2023-10-27 19:48:38,037 ----------------------------------------------------------------------------------------------------
|
193 |
+
2023-10-27 19:48:38,038 EPOCH 8 done: loss 0.0117 - lr: 0.000001
|
194 |
+
2023-10-27 19:49:01,125 DEV : loss 0.05222569778561592 - f1-score (micro avg) 0.9726
|
195 |
+
2023-10-27 19:49:01,178 saving best model
|
196 |
+
2023-10-27 19:49:03,903 ----------------------------------------------------------------------------------------------------
|
197 |
+
2023-10-27 19:49:49,349 epoch 9 - iter 372/3726 - loss 0.00486713 - time (sec): 45.44 - samples/sec: 455.66 - lr: 0.000001 - momentum: 0.000000
|
198 |
+
2023-10-27 19:50:34,984 epoch 9 - iter 744/3726 - loss 0.00545741 - time (sec): 91.08 - samples/sec: 453.89 - lr: 0.000001 - momentum: 0.000000
|
199 |
+
2023-10-27 19:51:20,189 epoch 9 - iter 1116/3726 - loss 0.00787820 - time (sec): 136.28 - samples/sec: 452.07 - lr: 0.000001 - momentum: 0.000000
|
200 |
+
2023-10-27 19:52:05,623 epoch 9 - iter 1488/3726 - loss 0.00691940 - time (sec): 181.72 - samples/sec: 451.59 - lr: 0.000001 - momentum: 0.000000
|
201 |
+
2023-10-27 19:52:51,095 epoch 9 - iter 1860/3726 - loss 0.00761910 - time (sec): 227.19 - samples/sec: 452.40 - lr: 0.000001 - momentum: 0.000000
|
202 |
+
2023-10-27 19:53:36,717 epoch 9 - iter 2232/3726 - loss 0.00762123 - time (sec): 272.81 - samples/sec: 450.93 - lr: 0.000001 - momentum: 0.000000
|
203 |
+
2023-10-27 19:54:23,451 epoch 9 - iter 2604/3726 - loss 0.00784988 - time (sec): 319.55 - samples/sec: 448.92 - lr: 0.000001 - momentum: 0.000000
|
204 |
+
2023-10-27 19:55:08,672 epoch 9 - iter 2976/3726 - loss 0.00844099 - time (sec): 364.77 - samples/sec: 449.81 - lr: 0.000001 - momentum: 0.000000
|
205 |
+
2023-10-27 19:55:53,980 epoch 9 - iter 3348/3726 - loss 0.00836439 - time (sec): 410.07 - samples/sec: 449.23 - lr: 0.000001 - momentum: 0.000000
|
206 |
+
2023-10-27 19:56:39,471 epoch 9 - iter 3720/3726 - loss 0.00807807 - time (sec): 455.57 - samples/sec: 448.18 - lr: 0.000001 - momentum: 0.000000
|
207 |
+
2023-10-27 19:56:40,233 ----------------------------------------------------------------------------------------------------
|
208 |
+
2023-10-27 19:56:40,233 EPOCH 9 done: loss 0.0081 - lr: 0.000001
|
209 |
+
2023-10-27 19:57:03,898 DEV : loss 0.05321481078863144 - f1-score (micro avg) 0.9742
|
210 |
+
2023-10-27 19:57:03,949 saving best model
|
211 |
+
2023-10-27 19:57:06,562 ----------------------------------------------------------------------------------------------------
|
212 |
+
2023-10-27 19:57:52,150 epoch 10 - iter 372/3726 - loss 0.00368318 - time (sec): 45.59 - samples/sec: 447.26 - lr: 0.000001 - momentum: 0.000000
|
213 |
+
2023-10-27 19:58:37,058 epoch 10 - iter 744/3726 - loss 0.00490381 - time (sec): 90.49 - samples/sec: 441.64 - lr: 0.000000 - momentum: 0.000000
|
214 |
+
2023-10-27 19:59:22,616 epoch 10 - iter 1116/3726 - loss 0.00591526 - time (sec): 136.05 - samples/sec: 444.19 - lr: 0.000000 - momentum: 0.000000
|
215 |
+
2023-10-27 20:00:08,343 epoch 10 - iter 1488/3726 - loss 0.00634553 - time (sec): 181.78 - samples/sec: 443.45 - lr: 0.000000 - momentum: 0.000000
|
216 |
+
2023-10-27 20:00:54,241 epoch 10 - iter 1860/3726 - loss 0.00584248 - time (sec): 227.68 - samples/sec: 441.45 - lr: 0.000000 - momentum: 0.000000
|
217 |
+
2023-10-27 20:01:40,141 epoch 10 - iter 2232/3726 - loss 0.00572180 - time (sec): 273.58 - samples/sec: 443.18 - lr: 0.000000 - momentum: 0.000000
|
218 |
+
2023-10-27 20:02:25,686 epoch 10 - iter 2604/3726 - loss 0.00598793 - time (sec): 319.12 - samples/sec: 445.80 - lr: 0.000000 - momentum: 0.000000
|
219 |
+
2023-10-27 20:03:11,659 epoch 10 - iter 2976/3726 - loss 0.00597232 - time (sec): 365.09 - samples/sec: 445.70 - lr: 0.000000 - momentum: 0.000000
|
220 |
+
2023-10-27 20:03:57,027 epoch 10 - iter 3348/3726 - loss 0.00599237 - time (sec): 410.46 - samples/sec: 447.67 - lr: 0.000000 - momentum: 0.000000
|
221 |
+
2023-10-27 20:04:42,462 epoch 10 - iter 3720/3726 - loss 0.00636112 - time (sec): 455.90 - samples/sec: 448.08 - lr: 0.000000 - momentum: 0.000000
|
222 |
+
2023-10-27 20:04:43,220 ----------------------------------------------------------------------------------------------------
|
223 |
+
2023-10-27 20:04:43,220 EPOCH 10 done: loss 0.0064 - lr: 0.000000
|
224 |
+
2023-10-27 20:05:06,157 DEV : loss 0.05384046211838722 - f1-score (micro avg) 0.9737
|
225 |
+
2023-10-27 20:05:08,560 ----------------------------------------------------------------------------------------------------
|
226 |
+
2023-10-27 20:05:08,562 Loading model from best epoch ...
|
227 |
+
2023-10-27 20:05:16,264 SequenceTagger predicts: Dictionary with 17 tags: O, S-ORG, B-ORG, E-ORG, I-ORG, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-MISC, B-MISC, E-MISC, I-MISC
|
228 |
+
2023-10-27 20:05:38,883
|
229 |
+
Results:
|
230 |
+
- F-score (micro) 0.9696
|
231 |
+
- F-score (macro) 0.9645
|
232 |
+
- Accuracy 0.9555
|
233 |
+
|
234 |
+
By class:
|
235 |
+
precision recall f1-score support
|
236 |
+
|
237 |
+
ORG 0.9665 0.9665 0.9665 1909
|
238 |
+
PER 0.9956 0.9956 0.9956 1591
|
239 |
+
LOC 0.9723 0.9674 0.9698 1413
|
240 |
+
MISC 0.9117 0.9409 0.9261 812
|
241 |
+
|
242 |
+
micro avg 0.9680 0.9712 0.9696 5725
|
243 |
+
macro avg 0.9615 0.9676 0.9645 5725
|
244 |
+
weighted avg 0.9682 0.9712 0.9697 5725
|
245 |
+
|
246 |
+
2023-10-27 20:05:38,883 ----------------------------------------------------------------------------------------------------
|