Upload ./training.log with huggingface_hub
Browse files- training.log +266 -0
training.log
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-03-26 09:31:31,802 ----------------------------------------------------------------------------------------------------
|
2 |
+
2024-03-26 09:31:31,803 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(31103, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=17, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2024-03-26 09:31:31,803 ----------------------------------------------------------------------------------------------------
|
51 |
+
2024-03-26 09:31:31,803 Corpus: 758 train + 94 dev + 96 test sentences
|
52 |
+
2024-03-26 09:31:31,803 ----------------------------------------------------------------------------------------------------
|
53 |
+
2024-03-26 09:31:31,803 Train: 758 sentences
|
54 |
+
2024-03-26 09:31:31,803 (train_with_dev=False, train_with_test=False)
|
55 |
+
2024-03-26 09:31:31,803 ----------------------------------------------------------------------------------------------------
|
56 |
+
2024-03-26 09:31:31,803 Training Params:
|
57 |
+
2024-03-26 09:31:31,803 - learning_rate: "5e-05"
|
58 |
+
2024-03-26 09:31:31,803 - mini_batch_size: "16"
|
59 |
+
2024-03-26 09:31:31,803 - max_epochs: "10"
|
60 |
+
2024-03-26 09:31:31,803 - shuffle: "True"
|
61 |
+
2024-03-26 09:31:31,803 ----------------------------------------------------------------------------------------------------
|
62 |
+
2024-03-26 09:31:31,803 Plugins:
|
63 |
+
2024-03-26 09:31:31,803 - TensorboardLogger
|
64 |
+
2024-03-26 09:31:31,803 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2024-03-26 09:31:31,803 ----------------------------------------------------------------------------------------------------
|
66 |
+
2024-03-26 09:31:31,803 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2024-03-26 09:31:31,803 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2024-03-26 09:31:31,803 ----------------------------------------------------------------------------------------------------
|
69 |
+
2024-03-26 09:31:31,803 Computation:
|
70 |
+
2024-03-26 09:31:31,803 - compute on device: cuda:0
|
71 |
+
2024-03-26 09:31:31,803 - embedding storage: none
|
72 |
+
2024-03-26 09:31:31,803 ----------------------------------------------------------------------------------------------------
|
73 |
+
2024-03-26 09:31:31,803 Model training base path: "flair-co-funer-gbert_base-bs16-e10-lr5e-05-1"
|
74 |
+
2024-03-26 09:31:31,803 ----------------------------------------------------------------------------------------------------
|
75 |
+
2024-03-26 09:31:31,803 ----------------------------------------------------------------------------------------------------
|
76 |
+
2024-03-26 09:31:31,803 Logging anything other than scalars to TensorBoard is currently not supported.
|
77 |
+
2024-03-26 09:31:33,778 epoch 1 - iter 4/48 - loss 3.13464684 - time (sec): 1.97 - samples/sec: 1375.34 - lr: 0.000003 - momentum: 0.000000
|
78 |
+
2024-03-26 09:31:35,058 epoch 1 - iter 8/48 - loss 3.04063711 - time (sec): 3.25 - samples/sec: 1655.82 - lr: 0.000007 - momentum: 0.000000
|
79 |
+
2024-03-26 09:31:37,983 epoch 1 - iter 12/48 - loss 2.87498959 - time (sec): 6.18 - samples/sec: 1408.24 - lr: 0.000011 - momentum: 0.000000
|
80 |
+
2024-03-26 09:31:41,134 epoch 1 - iter 16/48 - loss 2.71452658 - time (sec): 9.33 - samples/sec: 1306.73 - lr: 0.000016 - momentum: 0.000000
|
81 |
+
2024-03-26 09:31:43,588 epoch 1 - iter 20/48 - loss 2.54396549 - time (sec): 11.78 - samples/sec: 1305.27 - lr: 0.000020 - momentum: 0.000000
|
82 |
+
2024-03-26 09:31:45,279 epoch 1 - iter 24/48 - loss 2.41159667 - time (sec): 13.48 - samples/sec: 1353.38 - lr: 0.000024 - momentum: 0.000000
|
83 |
+
2024-03-26 09:31:46,852 epoch 1 - iter 28/48 - loss 2.30256979 - time (sec): 15.05 - samples/sec: 1375.61 - lr: 0.000028 - momentum: 0.000000
|
84 |
+
2024-03-26 09:31:48,927 epoch 1 - iter 32/48 - loss 2.20655569 - time (sec): 17.12 - samples/sec: 1380.31 - lr: 0.000032 - momentum: 0.000000
|
85 |
+
2024-03-26 09:31:49,904 epoch 1 - iter 36/48 - loss 2.12627397 - time (sec): 18.10 - samples/sec: 1439.10 - lr: 0.000036 - momentum: 0.000000
|
86 |
+
2024-03-26 09:31:51,838 epoch 1 - iter 40/48 - loss 2.02856966 - time (sec): 20.03 - samples/sec: 1453.30 - lr: 0.000041 - momentum: 0.000000
|
87 |
+
2024-03-26 09:31:53,824 epoch 1 - iter 44/48 - loss 1.93943712 - time (sec): 22.02 - samples/sec: 1438.68 - lr: 0.000045 - momentum: 0.000000
|
88 |
+
2024-03-26 09:31:55,285 epoch 1 - iter 48/48 - loss 1.84110524 - time (sec): 23.48 - samples/sec: 1468.03 - lr: 0.000049 - momentum: 0.000000
|
89 |
+
2024-03-26 09:31:55,285 ----------------------------------------------------------------------------------------------------
|
90 |
+
2024-03-26 09:31:55,286 EPOCH 1 done: loss 1.8411 - lr: 0.000049
|
91 |
+
2024-03-26 09:31:56,090 DEV : loss 0.5449312925338745 - f1-score (micro avg) 0.6421
|
92 |
+
2024-03-26 09:31:56,091 saving best model
|
93 |
+
2024-03-26 09:31:56,350 ----------------------------------------------------------------------------------------------------
|
94 |
+
2024-03-26 09:31:58,809 epoch 2 - iter 4/48 - loss 0.63065975 - time (sec): 2.46 - samples/sec: 1262.10 - lr: 0.000050 - momentum: 0.000000
|
95 |
+
2024-03-26 09:32:00,855 epoch 2 - iter 8/48 - loss 0.61141871 - time (sec): 4.50 - samples/sec: 1467.84 - lr: 0.000049 - momentum: 0.000000
|
96 |
+
2024-03-26 09:32:03,090 epoch 2 - iter 12/48 - loss 0.58530365 - time (sec): 6.74 - samples/sec: 1373.84 - lr: 0.000049 - momentum: 0.000000
|
97 |
+
2024-03-26 09:32:05,122 epoch 2 - iter 16/48 - loss 0.56230651 - time (sec): 8.77 - samples/sec: 1358.57 - lr: 0.000048 - momentum: 0.000000
|
98 |
+
2024-03-26 09:32:07,226 epoch 2 - iter 20/48 - loss 0.54060094 - time (sec): 10.88 - samples/sec: 1378.87 - lr: 0.000048 - momentum: 0.000000
|
99 |
+
2024-03-26 09:32:10,380 epoch 2 - iter 24/48 - loss 0.49961752 - time (sec): 14.03 - samples/sec: 1318.89 - lr: 0.000047 - momentum: 0.000000
|
100 |
+
2024-03-26 09:32:12,732 epoch 2 - iter 28/48 - loss 0.48484578 - time (sec): 16.38 - samples/sec: 1314.96 - lr: 0.000047 - momentum: 0.000000
|
101 |
+
2024-03-26 09:32:14,439 epoch 2 - iter 32/48 - loss 0.47215469 - time (sec): 18.09 - samples/sec: 1333.85 - lr: 0.000046 - momentum: 0.000000
|
102 |
+
2024-03-26 09:32:15,461 epoch 2 - iter 36/48 - loss 0.46303288 - time (sec): 19.11 - samples/sec: 1384.22 - lr: 0.000046 - momentum: 0.000000
|
103 |
+
2024-03-26 09:32:17,319 epoch 2 - iter 40/48 - loss 0.45128966 - time (sec): 20.97 - samples/sec: 1402.01 - lr: 0.000046 - momentum: 0.000000
|
104 |
+
2024-03-26 09:32:19,328 epoch 2 - iter 44/48 - loss 0.44327526 - time (sec): 22.98 - samples/sec: 1397.39 - lr: 0.000045 - momentum: 0.000000
|
105 |
+
2024-03-26 09:32:20,773 epoch 2 - iter 48/48 - loss 0.43448719 - time (sec): 24.42 - samples/sec: 1411.53 - lr: 0.000045 - momentum: 0.000000
|
106 |
+
2024-03-26 09:32:20,773 ----------------------------------------------------------------------------------------------------
|
107 |
+
2024-03-26 09:32:20,773 EPOCH 2 done: loss 0.4345 - lr: 0.000045
|
108 |
+
2024-03-26 09:32:21,662 DEV : loss 0.2701604962348938 - f1-score (micro avg) 0.812
|
109 |
+
2024-03-26 09:32:21,663 saving best model
|
110 |
+
2024-03-26 09:32:22,173 ----------------------------------------------------------------------------------------------------
|
111 |
+
2024-03-26 09:32:24,643 epoch 3 - iter 4/48 - loss 0.31097284 - time (sec): 2.47 - samples/sec: 1236.92 - lr: 0.000044 - momentum: 0.000000
|
112 |
+
2024-03-26 09:32:26,455 epoch 3 - iter 8/48 - loss 0.27100056 - time (sec): 4.28 - samples/sec: 1371.11 - lr: 0.000044 - momentum: 0.000000
|
113 |
+
2024-03-26 09:32:28,248 epoch 3 - iter 12/48 - loss 0.27588384 - time (sec): 6.07 - samples/sec: 1447.17 - lr: 0.000043 - momentum: 0.000000
|
114 |
+
2024-03-26 09:32:30,630 epoch 3 - iter 16/48 - loss 0.25168783 - time (sec): 8.45 - samples/sec: 1444.54 - lr: 0.000043 - momentum: 0.000000
|
115 |
+
2024-03-26 09:32:32,057 epoch 3 - iter 20/48 - loss 0.26133874 - time (sec): 9.88 - samples/sec: 1497.43 - lr: 0.000042 - momentum: 0.000000
|
116 |
+
2024-03-26 09:32:34,963 epoch 3 - iter 24/48 - loss 0.24628684 - time (sec): 12.79 - samples/sec: 1478.89 - lr: 0.000042 - momentum: 0.000000
|
117 |
+
2024-03-26 09:32:35,719 epoch 3 - iter 28/48 - loss 0.23985620 - time (sec): 13.54 - samples/sec: 1553.61 - lr: 0.000041 - momentum: 0.000000
|
118 |
+
2024-03-26 09:32:38,236 epoch 3 - iter 32/48 - loss 0.22794958 - time (sec): 16.06 - samples/sec: 1495.88 - lr: 0.000041 - momentum: 0.000000
|
119 |
+
2024-03-26 09:32:40,224 epoch 3 - iter 36/48 - loss 0.21907449 - time (sec): 18.05 - samples/sec: 1488.15 - lr: 0.000040 - momentum: 0.000000
|
120 |
+
2024-03-26 09:32:42,104 epoch 3 - iter 40/48 - loss 0.21907616 - time (sec): 19.93 - samples/sec: 1476.48 - lr: 0.000040 - momentum: 0.000000
|
121 |
+
2024-03-26 09:32:44,222 epoch 3 - iter 44/48 - loss 0.21043578 - time (sec): 22.05 - samples/sec: 1479.42 - lr: 0.000040 - momentum: 0.000000
|
122 |
+
2024-03-26 09:32:45,439 epoch 3 - iter 48/48 - loss 0.20906826 - time (sec): 23.26 - samples/sec: 1481.82 - lr: 0.000039 - momentum: 0.000000
|
123 |
+
2024-03-26 09:32:45,439 ----------------------------------------------------------------------------------------------------
|
124 |
+
2024-03-26 09:32:45,439 EPOCH 3 done: loss 0.2091 - lr: 0.000039
|
125 |
+
2024-03-26 09:32:46,322 DEV : loss 0.2270229309797287 - f1-score (micro avg) 0.8544
|
126 |
+
2024-03-26 09:32:46,323 saving best model
|
127 |
+
2024-03-26 09:32:46,755 ----------------------------------------------------------------------------------------------------
|
128 |
+
2024-03-26 09:32:48,235 epoch 4 - iter 4/48 - loss 0.16865347 - time (sec): 1.48 - samples/sec: 1844.61 - lr: 0.000039 - momentum: 0.000000
|
129 |
+
2024-03-26 09:32:50,630 epoch 4 - iter 8/48 - loss 0.16492162 - time (sec): 3.87 - samples/sec: 1481.26 - lr: 0.000038 - momentum: 0.000000
|
130 |
+
2024-03-26 09:32:52,697 epoch 4 - iter 12/48 - loss 0.16216988 - time (sec): 5.94 - samples/sec: 1470.92 - lr: 0.000038 - momentum: 0.000000
|
131 |
+
2024-03-26 09:32:54,836 epoch 4 - iter 16/48 - loss 0.14441421 - time (sec): 8.08 - samples/sec: 1481.99 - lr: 0.000037 - momentum: 0.000000
|
132 |
+
2024-03-26 09:32:57,827 epoch 4 - iter 20/48 - loss 0.13635337 - time (sec): 11.07 - samples/sec: 1399.22 - lr: 0.000037 - momentum: 0.000000
|
133 |
+
2024-03-26 09:32:59,236 epoch 4 - iter 24/48 - loss 0.13563064 - time (sec): 12.48 - samples/sec: 1444.20 - lr: 0.000036 - momentum: 0.000000
|
134 |
+
2024-03-26 09:33:00,732 epoch 4 - iter 28/48 - loss 0.13427894 - time (sec): 13.98 - samples/sec: 1483.96 - lr: 0.000036 - momentum: 0.000000
|
135 |
+
2024-03-26 09:33:03,174 epoch 4 - iter 32/48 - loss 0.13956275 - time (sec): 16.42 - samples/sec: 1476.35 - lr: 0.000035 - momentum: 0.000000
|
136 |
+
2024-03-26 09:33:04,151 epoch 4 - iter 36/48 - loss 0.13898618 - time (sec): 17.39 - samples/sec: 1527.52 - lr: 0.000035 - momentum: 0.000000
|
137 |
+
2024-03-26 09:33:06,496 epoch 4 - iter 40/48 - loss 0.13510467 - time (sec): 19.74 - samples/sec: 1479.50 - lr: 0.000034 - momentum: 0.000000
|
138 |
+
2024-03-26 09:33:08,262 epoch 4 - iter 44/48 - loss 0.13614949 - time (sec): 21.51 - samples/sec: 1500.31 - lr: 0.000034 - momentum: 0.000000
|
139 |
+
2024-03-26 09:33:09,593 epoch 4 - iter 48/48 - loss 0.13528628 - time (sec): 22.84 - samples/sec: 1509.49 - lr: 0.000034 - momentum: 0.000000
|
140 |
+
2024-03-26 09:33:09,593 ----------------------------------------------------------------------------------------------------
|
141 |
+
2024-03-26 09:33:09,593 EPOCH 4 done: loss 0.1353 - lr: 0.000034
|
142 |
+
2024-03-26 09:33:10,485 DEV : loss 0.17390906810760498 - f1-score (micro avg) 0.8874
|
143 |
+
2024-03-26 09:33:10,486 saving best model
|
144 |
+
2024-03-26 09:33:10,918 ----------------------------------------------------------------------------------------------------
|
145 |
+
2024-03-26 09:33:12,819 epoch 5 - iter 4/48 - loss 0.10556470 - time (sec): 1.90 - samples/sec: 1468.92 - lr: 0.000033 - momentum: 0.000000
|
146 |
+
2024-03-26 09:33:15,231 epoch 5 - iter 8/48 - loss 0.09265636 - time (sec): 4.31 - samples/sec: 1377.48 - lr: 0.000033 - momentum: 0.000000
|
147 |
+
2024-03-26 09:33:17,165 epoch 5 - iter 12/48 - loss 0.09936621 - time (sec): 6.24 - samples/sec: 1372.04 - lr: 0.000032 - momentum: 0.000000
|
148 |
+
2024-03-26 09:33:19,146 epoch 5 - iter 16/48 - loss 0.10301987 - time (sec): 8.23 - samples/sec: 1404.36 - lr: 0.000032 - momentum: 0.000000
|
149 |
+
2024-03-26 09:33:21,038 epoch 5 - iter 20/48 - loss 0.10466271 - time (sec): 10.12 - samples/sec: 1414.52 - lr: 0.000031 - momentum: 0.000000
|
150 |
+
2024-03-26 09:33:22,531 epoch 5 - iter 24/48 - loss 0.11156514 - time (sec): 11.61 - samples/sec: 1464.98 - lr: 0.000031 - momentum: 0.000000
|
151 |
+
2024-03-26 09:33:24,700 epoch 5 - iter 28/48 - loss 0.11115749 - time (sec): 13.78 - samples/sec: 1461.94 - lr: 0.000030 - momentum: 0.000000
|
152 |
+
2024-03-26 09:33:27,280 epoch 5 - iter 32/48 - loss 0.10915818 - time (sec): 16.36 - samples/sec: 1447.00 - lr: 0.000030 - momentum: 0.000000
|
153 |
+
2024-03-26 09:33:29,609 epoch 5 - iter 36/48 - loss 0.10469563 - time (sec): 18.69 - samples/sec: 1452.08 - lr: 0.000029 - momentum: 0.000000
|
154 |
+
2024-03-26 09:33:30,483 epoch 5 - iter 40/48 - loss 0.10615079 - time (sec): 19.56 - samples/sec: 1495.65 - lr: 0.000029 - momentum: 0.000000
|
155 |
+
2024-03-26 09:33:33,063 epoch 5 - iter 44/48 - loss 0.10402087 - time (sec): 22.14 - samples/sec: 1462.55 - lr: 0.000029 - momentum: 0.000000
|
156 |
+
2024-03-26 09:33:34,511 epoch 5 - iter 48/48 - loss 0.10402272 - time (sec): 23.59 - samples/sec: 1461.29 - lr: 0.000028 - momentum: 0.000000
|
157 |
+
2024-03-26 09:33:34,511 ----------------------------------------------------------------------------------------------------
|
158 |
+
2024-03-26 09:33:34,511 EPOCH 5 done: loss 0.1040 - lr: 0.000028
|
159 |
+
2024-03-26 09:33:35,399 DEV : loss 0.16777649521827698 - f1-score (micro avg) 0.9018
|
160 |
+
2024-03-26 09:33:35,400 saving best model
|
161 |
+
2024-03-26 09:33:35,831 ----------------------------------------------------------------------------------------------------
|
162 |
+
2024-03-26 09:33:37,818 epoch 6 - iter 4/48 - loss 0.04935121 - time (sec): 1.98 - samples/sec: 1332.68 - lr: 0.000028 - momentum: 0.000000
|
163 |
+
2024-03-26 09:33:39,894 epoch 6 - iter 8/48 - loss 0.07739319 - time (sec): 4.06 - samples/sec: 1362.42 - lr: 0.000027 - momentum: 0.000000
|
164 |
+
2024-03-26 09:33:41,679 epoch 6 - iter 12/48 - loss 0.07870801 - time (sec): 5.85 - samples/sec: 1478.51 - lr: 0.000027 - momentum: 0.000000
|
165 |
+
2024-03-26 09:33:43,866 epoch 6 - iter 16/48 - loss 0.07730179 - time (sec): 8.03 - samples/sec: 1430.42 - lr: 0.000026 - momentum: 0.000000
|
166 |
+
2024-03-26 09:33:45,592 epoch 6 - iter 20/48 - loss 0.08151266 - time (sec): 9.76 - samples/sec: 1438.08 - lr: 0.000026 - momentum: 0.000000
|
167 |
+
2024-03-26 09:33:48,008 epoch 6 - iter 24/48 - loss 0.07871227 - time (sec): 12.17 - samples/sec: 1414.34 - lr: 0.000025 - momentum: 0.000000
|
168 |
+
2024-03-26 09:33:49,815 epoch 6 - iter 28/48 - loss 0.08023292 - time (sec): 13.98 - samples/sec: 1414.68 - lr: 0.000025 - momentum: 0.000000
|
169 |
+
2024-03-26 09:33:52,231 epoch 6 - iter 32/48 - loss 0.07986238 - time (sec): 16.40 - samples/sec: 1393.96 - lr: 0.000024 - momentum: 0.000000
|
170 |
+
2024-03-26 09:33:55,591 epoch 6 - iter 36/48 - loss 0.07669859 - time (sec): 19.76 - samples/sec: 1349.74 - lr: 0.000024 - momentum: 0.000000
|
171 |
+
2024-03-26 09:33:57,177 epoch 6 - iter 40/48 - loss 0.07499192 - time (sec): 21.34 - samples/sec: 1384.54 - lr: 0.000023 - momentum: 0.000000
|
172 |
+
2024-03-26 09:33:58,970 epoch 6 - iter 44/48 - loss 0.07360792 - time (sec): 23.14 - samples/sec: 1388.05 - lr: 0.000023 - momentum: 0.000000
|
173 |
+
2024-03-26 09:34:00,234 epoch 6 - iter 48/48 - loss 0.07617279 - time (sec): 24.40 - samples/sec: 1412.75 - lr: 0.000023 - momentum: 0.000000
|
174 |
+
2024-03-26 09:34:00,235 ----------------------------------------------------------------------------------------------------
|
175 |
+
2024-03-26 09:34:00,235 EPOCH 6 done: loss 0.0762 - lr: 0.000023
|
176 |
+
2024-03-26 09:34:01,134 DEV : loss 0.16763538122177124 - f1-score (micro avg) 0.9099
|
177 |
+
2024-03-26 09:34:01,134 saving best model
|
178 |
+
2024-03-26 09:34:01,569 ----------------------------------------------------------------------------------------------------
|
179 |
+
2024-03-26 09:34:03,193 epoch 7 - iter 4/48 - loss 0.09393644 - time (sec): 1.62 - samples/sec: 1694.32 - lr: 0.000022 - momentum: 0.000000
|
180 |
+
2024-03-26 09:34:05,334 epoch 7 - iter 8/48 - loss 0.07306259 - time (sec): 3.76 - samples/sec: 1429.27 - lr: 0.000022 - momentum: 0.000000
|
181 |
+
2024-03-26 09:34:07,604 epoch 7 - iter 12/48 - loss 0.07212888 - time (sec): 6.03 - samples/sec: 1376.15 - lr: 0.000021 - momentum: 0.000000
|
182 |
+
2024-03-26 09:34:10,146 epoch 7 - iter 16/48 - loss 0.06332659 - time (sec): 8.58 - samples/sec: 1345.98 - lr: 0.000021 - momentum: 0.000000
|
183 |
+
2024-03-26 09:34:12,382 epoch 7 - iter 20/48 - loss 0.06418990 - time (sec): 10.81 - samples/sec: 1351.94 - lr: 0.000020 - momentum: 0.000000
|
184 |
+
2024-03-26 09:34:13,717 epoch 7 - iter 24/48 - loss 0.06067116 - time (sec): 12.15 - samples/sec: 1408.53 - lr: 0.000020 - momentum: 0.000000
|
185 |
+
2024-03-26 09:34:15,098 epoch 7 - iter 28/48 - loss 0.06052551 - time (sec): 13.53 - samples/sec: 1474.63 - lr: 0.000019 - momentum: 0.000000
|
186 |
+
2024-03-26 09:34:17,052 epoch 7 - iter 32/48 - loss 0.05922220 - time (sec): 15.48 - samples/sec: 1465.11 - lr: 0.000019 - momentum: 0.000000
|
187 |
+
2024-03-26 09:34:19,180 epoch 7 - iter 36/48 - loss 0.05681445 - time (sec): 17.61 - samples/sec: 1454.57 - lr: 0.000018 - momentum: 0.000000
|
188 |
+
2024-03-26 09:34:21,604 epoch 7 - iter 40/48 - loss 0.05828898 - time (sec): 20.03 - samples/sec: 1434.70 - lr: 0.000018 - momentum: 0.000000
|
189 |
+
2024-03-26 09:34:23,409 epoch 7 - iter 44/48 - loss 0.05798258 - time (sec): 21.84 - samples/sec: 1451.65 - lr: 0.000017 - momentum: 0.000000
|
190 |
+
2024-03-26 09:34:25,294 epoch 7 - iter 48/48 - loss 0.05651592 - time (sec): 23.72 - samples/sec: 1453.11 - lr: 0.000017 - momentum: 0.000000
|
191 |
+
2024-03-26 09:34:25,294 ----------------------------------------------------------------------------------------------------
|
192 |
+
2024-03-26 09:34:25,294 EPOCH 7 done: loss 0.0565 - lr: 0.000017
|
193 |
+
2024-03-26 09:34:26,192 DEV : loss 0.16629981994628906 - f1-score (micro avg) 0.9159
|
194 |
+
2024-03-26 09:34:26,193 saving best model
|
195 |
+
2024-03-26 09:34:26,624 ----------------------------------------------------------------------------------------------------
|
196 |
+
2024-03-26 09:34:28,581 epoch 8 - iter 4/48 - loss 0.05104273 - time (sec): 1.95 - samples/sec: 1383.16 - lr: 0.000017 - momentum: 0.000000
|
197 |
+
2024-03-26 09:34:31,363 epoch 8 - iter 8/48 - loss 0.03876510 - time (sec): 4.74 - samples/sec: 1172.92 - lr: 0.000016 - momentum: 0.000000
|
198 |
+
2024-03-26 09:34:32,635 epoch 8 - iter 12/48 - loss 0.04249942 - time (sec): 6.01 - samples/sec: 1328.57 - lr: 0.000016 - momentum: 0.000000
|
199 |
+
2024-03-26 09:34:35,040 epoch 8 - iter 16/48 - loss 0.05026022 - time (sec): 8.41 - samples/sec: 1337.94 - lr: 0.000015 - momentum: 0.000000
|
200 |
+
2024-03-26 09:34:37,549 epoch 8 - iter 20/48 - loss 0.04212980 - time (sec): 10.92 - samples/sec: 1379.56 - lr: 0.000015 - momentum: 0.000000
|
201 |
+
2024-03-26 09:34:38,829 epoch 8 - iter 24/48 - loss 0.04271362 - time (sec): 12.20 - samples/sec: 1458.44 - lr: 0.000014 - momentum: 0.000000
|
202 |
+
2024-03-26 09:34:42,077 epoch 8 - iter 28/48 - loss 0.04376621 - time (sec): 15.45 - samples/sec: 1412.35 - lr: 0.000014 - momentum: 0.000000
|
203 |
+
2024-03-26 09:34:44,069 epoch 8 - iter 32/48 - loss 0.04516094 - time (sec): 17.44 - samples/sec: 1413.41 - lr: 0.000013 - momentum: 0.000000
|
204 |
+
2024-03-26 09:34:45,121 epoch 8 - iter 36/48 - loss 0.04602552 - time (sec): 18.49 - samples/sec: 1451.86 - lr: 0.000013 - momentum: 0.000000
|
205 |
+
2024-03-26 09:34:46,782 epoch 8 - iter 40/48 - loss 0.04504686 - time (sec): 20.16 - samples/sec: 1450.07 - lr: 0.000012 - momentum: 0.000000
|
206 |
+
2024-03-26 09:34:48,353 epoch 8 - iter 44/48 - loss 0.04621049 - time (sec): 21.73 - samples/sec: 1470.63 - lr: 0.000012 - momentum: 0.000000
|
207 |
+
2024-03-26 09:34:50,296 epoch 8 - iter 48/48 - loss 0.04680647 - time (sec): 23.67 - samples/sec: 1456.41 - lr: 0.000011 - momentum: 0.000000
|
208 |
+
2024-03-26 09:34:50,296 ----------------------------------------------------------------------------------------------------
|
209 |
+
2024-03-26 09:34:50,296 EPOCH 8 done: loss 0.0468 - lr: 0.000011
|
210 |
+
2024-03-26 09:34:51,194 DEV : loss 0.1683352291584015 - f1-score (micro avg) 0.9131
|
211 |
+
2024-03-26 09:34:51,196 ----------------------------------------------------------------------------------------------------
|
212 |
+
2024-03-26 09:34:53,032 epoch 9 - iter 4/48 - loss 0.03239823 - time (sec): 1.84 - samples/sec: 1458.83 - lr: 0.000011 - momentum: 0.000000
|
213 |
+
2024-03-26 09:34:56,183 epoch 9 - iter 8/48 - loss 0.02376028 - time (sec): 4.99 - samples/sec: 1252.19 - lr: 0.000011 - momentum: 0.000000
|
214 |
+
2024-03-26 09:34:57,833 epoch 9 - iter 12/48 - loss 0.02807453 - time (sec): 6.64 - samples/sec: 1309.51 - lr: 0.000010 - momentum: 0.000000
|
215 |
+
2024-03-26 09:35:00,070 epoch 9 - iter 16/48 - loss 0.02893077 - time (sec): 8.87 - samples/sec: 1298.35 - lr: 0.000010 - momentum: 0.000000
|
216 |
+
2024-03-26 09:35:02,333 epoch 9 - iter 20/48 - loss 0.03399391 - time (sec): 11.14 - samples/sec: 1328.52 - lr: 0.000009 - momentum: 0.000000
|
217 |
+
2024-03-26 09:35:04,499 epoch 9 - iter 24/48 - loss 0.03527515 - time (sec): 13.30 - samples/sec: 1344.48 - lr: 0.000009 - momentum: 0.000000
|
218 |
+
2024-03-26 09:35:06,861 epoch 9 - iter 28/48 - loss 0.03279158 - time (sec): 15.66 - samples/sec: 1337.95 - lr: 0.000008 - momentum: 0.000000
|
219 |
+
2024-03-26 09:35:09,187 epoch 9 - iter 32/48 - loss 0.03328617 - time (sec): 17.99 - samples/sec: 1334.74 - lr: 0.000008 - momentum: 0.000000
|
220 |
+
2024-03-26 09:35:10,978 epoch 9 - iter 36/48 - loss 0.03552305 - time (sec): 19.78 - samples/sec: 1353.32 - lr: 0.000007 - momentum: 0.000000
|
221 |
+
2024-03-26 09:35:13,150 epoch 9 - iter 40/48 - loss 0.03717142 - time (sec): 21.95 - samples/sec: 1343.11 - lr: 0.000007 - momentum: 0.000000
|
222 |
+
2024-03-26 09:35:15,278 epoch 9 - iter 44/48 - loss 0.03618859 - time (sec): 24.08 - samples/sec: 1353.80 - lr: 0.000006 - momentum: 0.000000
|
223 |
+
2024-03-26 09:35:16,026 epoch 9 - iter 48/48 - loss 0.03659229 - time (sec): 24.83 - samples/sec: 1388.29 - lr: 0.000006 - momentum: 0.000000
|
224 |
+
2024-03-26 09:35:16,027 ----------------------------------------------------------------------------------------------------
|
225 |
+
2024-03-26 09:35:16,027 EPOCH 9 done: loss 0.0366 - lr: 0.000006
|
226 |
+
2024-03-26 09:35:16,937 DEV : loss 0.16806438565254211 - f1-score (micro avg) 0.9207
|
227 |
+
2024-03-26 09:35:16,938 saving best model
|
228 |
+
2024-03-26 09:35:17,369 ----------------------------------------------------------------------------------------------------
|
229 |
+
2024-03-26 09:35:19,113 epoch 10 - iter 4/48 - loss 0.01938598 - time (sec): 1.74 - samples/sec: 1508.81 - lr: 0.000006 - momentum: 0.000000
|
230 |
+
2024-03-26 09:35:21,045 epoch 10 - iter 8/48 - loss 0.02258557 - time (sec): 3.67 - samples/sec: 1507.88 - lr: 0.000005 - momentum: 0.000000
|
231 |
+
2024-03-26 09:35:23,658 epoch 10 - iter 12/48 - loss 0.02730836 - time (sec): 6.29 - samples/sec: 1387.97 - lr: 0.000005 - momentum: 0.000000
|
232 |
+
2024-03-26 09:35:25,570 epoch 10 - iter 16/48 - loss 0.03125997 - time (sec): 8.20 - samples/sec: 1399.21 - lr: 0.000004 - momentum: 0.000000
|
233 |
+
2024-03-26 09:35:27,402 epoch 10 - iter 20/48 - loss 0.03153887 - time (sec): 10.03 - samples/sec: 1442.05 - lr: 0.000004 - momentum: 0.000000
|
234 |
+
2024-03-26 09:35:29,043 epoch 10 - iter 24/48 - loss 0.03612120 - time (sec): 11.67 - samples/sec: 1452.94 - lr: 0.000003 - momentum: 0.000000
|
235 |
+
2024-03-26 09:35:30,786 epoch 10 - iter 28/48 - loss 0.03445545 - time (sec): 13.42 - samples/sec: 1474.83 - lr: 0.000003 - momentum: 0.000000
|
236 |
+
2024-03-26 09:35:31,976 epoch 10 - iter 32/48 - loss 0.03355325 - time (sec): 14.61 - samples/sec: 1507.95 - lr: 0.000002 - momentum: 0.000000
|
237 |
+
2024-03-26 09:35:34,947 epoch 10 - iter 36/48 - loss 0.03055986 - time (sec): 17.58 - samples/sec: 1457.31 - lr: 0.000002 - momentum: 0.000000
|
238 |
+
2024-03-26 09:35:37,702 epoch 10 - iter 40/48 - loss 0.03283648 - time (sec): 20.33 - samples/sec: 1430.36 - lr: 0.000001 - momentum: 0.000000
|
239 |
+
2024-03-26 09:35:40,457 epoch 10 - iter 44/48 - loss 0.03091020 - time (sec): 23.09 - samples/sec: 1398.36 - lr: 0.000001 - momentum: 0.000000
|
240 |
+
2024-03-26 09:35:42,052 epoch 10 - iter 48/48 - loss 0.03004462 - time (sec): 24.68 - samples/sec: 1396.65 - lr: 0.000000 - momentum: 0.000000
|
241 |
+
2024-03-26 09:35:42,053 ----------------------------------------------------------------------------------------------------
|
242 |
+
2024-03-26 09:35:42,053 EPOCH 10 done: loss 0.0300 - lr: 0.000000
|
243 |
+
2024-03-26 09:35:42,972 DEV : loss 0.1705980747938156 - f1-score (micro avg) 0.9214
|
244 |
+
2024-03-26 09:35:42,974 saving best model
|
245 |
+
2024-03-26 09:35:43,689 ----------------------------------------------------------------------------------------------------
|
246 |
+
2024-03-26 09:35:43,689 Loading model from best epoch ...
|
247 |
+
2024-03-26 09:35:44,576 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
|
248 |
+
2024-03-26 09:35:45,419
|
249 |
+
Results:
|
250 |
+
- F-score (micro) 0.9
|
251 |
+
- F-score (macro) 0.6847
|
252 |
+
- Accuracy 0.8239
|
253 |
+
|
254 |
+
By class:
|
255 |
+
precision recall f1-score support
|
256 |
+
|
257 |
+
Unternehmen 0.9046 0.8910 0.8977 266
|
258 |
+
Auslagerung 0.8333 0.9036 0.8671 249
|
259 |
+
Ort 0.9635 0.9851 0.9742 134
|
260 |
+
Software 0.0000 0.0000 0.0000 0
|
261 |
+
|
262 |
+
micro avg 0.8852 0.9153 0.9000 649
|
263 |
+
macro avg 0.6754 0.6949 0.6847 649
|
264 |
+
weighted avg 0.8894 0.9153 0.9017 649
|
265 |
+
|
266 |
+
2024-03-26 09:35:45,419 ----------------------------------------------------------------------------------------------------
|