File size: 23,640 Bytes
5d2c939 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
2024-03-26 09:55:54,516 ----------------------------------------------------------------------------------------------------
2024-03-26 09:55:54,517 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(31103, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 09:55:54,517 ----------------------------------------------------------------------------------------------------
2024-03-26 09:55:54,517 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 09:55:54,517 ----------------------------------------------------------------------------------------------------
2024-03-26 09:55:54,517 Train: 758 sentences
2024-03-26 09:55:54,517 (train_with_dev=False, train_with_test=False)
2024-03-26 09:55:54,517 ----------------------------------------------------------------------------------------------------
2024-03-26 09:55:54,517 Training Params:
2024-03-26 09:55:54,517 - learning_rate: "5e-05"
2024-03-26 09:55:54,517 - mini_batch_size: "8"
2024-03-26 09:55:54,517 - max_epochs: "10"
2024-03-26 09:55:54,517 - shuffle: "True"
2024-03-26 09:55:54,517 ----------------------------------------------------------------------------------------------------
2024-03-26 09:55:54,517 Plugins:
2024-03-26 09:55:54,517 - TensorboardLogger
2024-03-26 09:55:54,517 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 09:55:54,517 ----------------------------------------------------------------------------------------------------
2024-03-26 09:55:54,517 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 09:55:54,517 - metric: "('micro avg', 'f1-score')"
2024-03-26 09:55:54,517 ----------------------------------------------------------------------------------------------------
2024-03-26 09:55:54,517 Computation:
2024-03-26 09:55:54,517 - compute on device: cuda:0
2024-03-26 09:55:54,517 - embedding storage: none
2024-03-26 09:55:54,517 ----------------------------------------------------------------------------------------------------
2024-03-26 09:55:54,517 Model training base path: "flair-co-funer-gbert_base-bs8-e10-lr5e-05-2"
2024-03-26 09:55:54,517 ----------------------------------------------------------------------------------------------------
2024-03-26 09:55:54,517 ----------------------------------------------------------------------------------------------------
2024-03-26 09:55:54,517 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 09:55:56,359 epoch 1 - iter 9/95 - loss 3.51295648 - time (sec): 1.84 - samples/sec: 1913.27 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:55:58,471 epoch 1 - iter 18/95 - loss 3.24148185 - time (sec): 3.95 - samples/sec: 1822.75 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:56:00,044 epoch 1 - iter 27/95 - loss 2.94359502 - time (sec): 5.53 - samples/sec: 1824.22 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:56:01,995 epoch 1 - iter 36/95 - loss 2.72268801 - time (sec): 7.48 - samples/sec: 1845.85 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:56:04,076 epoch 1 - iter 45/95 - loss 2.52912232 - time (sec): 9.56 - samples/sec: 1783.63 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:56:06,050 epoch 1 - iter 54/95 - loss 2.35533618 - time (sec): 11.53 - samples/sec: 1760.66 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:56:07,584 epoch 1 - iter 63/95 - loss 2.22092888 - time (sec): 13.07 - samples/sec: 1770.48 - lr: 0.000033 - momentum: 0.000000
2024-03-26 09:56:08,848 epoch 1 - iter 72/95 - loss 2.07343945 - time (sec): 14.33 - samples/sec: 1824.85 - lr: 0.000037 - momentum: 0.000000
2024-03-26 09:56:10,406 epoch 1 - iter 81/95 - loss 1.94077724 - time (sec): 15.89 - samples/sec: 1851.36 - lr: 0.000042 - momentum: 0.000000
2024-03-26 09:56:12,341 epoch 1 - iter 90/95 - loss 1.81672289 - time (sec): 17.82 - samples/sec: 1829.55 - lr: 0.000047 - momentum: 0.000000
2024-03-26 09:56:13,406 ----------------------------------------------------------------------------------------------------
2024-03-26 09:56:13,406 EPOCH 1 done: loss 1.7469 - lr: 0.000047
2024-03-26 09:56:14,309 DEV : loss 0.4293653666973114 - f1-score (micro avg) 0.7027
2024-03-26 09:56:14,310 saving best model
2024-03-26 09:56:14,570 ----------------------------------------------------------------------------------------------------
2024-03-26 09:56:15,883 epoch 2 - iter 9/95 - loss 0.60874536 - time (sec): 1.31 - samples/sec: 2473.32 - lr: 0.000050 - momentum: 0.000000
2024-03-26 09:56:17,748 epoch 2 - iter 18/95 - loss 0.49896854 - time (sec): 3.18 - samples/sec: 2162.35 - lr: 0.000049 - momentum: 0.000000
2024-03-26 09:56:20,547 epoch 2 - iter 27/95 - loss 0.41484753 - time (sec): 5.98 - samples/sec: 1934.16 - lr: 0.000048 - momentum: 0.000000
2024-03-26 09:56:22,603 epoch 2 - iter 36/95 - loss 0.39641865 - time (sec): 8.03 - samples/sec: 1850.91 - lr: 0.000048 - momentum: 0.000000
2024-03-26 09:56:24,354 epoch 2 - iter 45/95 - loss 0.37116751 - time (sec): 9.78 - samples/sec: 1837.44 - lr: 0.000047 - momentum: 0.000000
2024-03-26 09:56:26,443 epoch 2 - iter 54/95 - loss 0.35768210 - time (sec): 11.87 - samples/sec: 1792.21 - lr: 0.000047 - momentum: 0.000000
2024-03-26 09:56:27,969 epoch 2 - iter 63/95 - loss 0.36146991 - time (sec): 13.40 - samples/sec: 1816.49 - lr: 0.000046 - momentum: 0.000000
2024-03-26 09:56:29,446 epoch 2 - iter 72/95 - loss 0.35422116 - time (sec): 14.87 - samples/sec: 1844.21 - lr: 0.000046 - momentum: 0.000000
2024-03-26 09:56:30,605 epoch 2 - iter 81/95 - loss 0.34979111 - time (sec): 16.03 - samples/sec: 1878.96 - lr: 0.000045 - momentum: 0.000000
2024-03-26 09:56:31,880 epoch 2 - iter 90/95 - loss 0.34698102 - time (sec): 17.31 - samples/sec: 1900.71 - lr: 0.000045 - momentum: 0.000000
2024-03-26 09:56:32,837 ----------------------------------------------------------------------------------------------------
2024-03-26 09:56:32,837 EPOCH 2 done: loss 0.3378 - lr: 0.000045
2024-03-26 09:56:33,723 DEV : loss 0.25087055563926697 - f1-score (micro avg) 0.8296
2024-03-26 09:56:33,724 saving best model
2024-03-26 09:56:34,168 ----------------------------------------------------------------------------------------------------
2024-03-26 09:56:36,165 epoch 3 - iter 9/95 - loss 0.18016583 - time (sec): 2.00 - samples/sec: 1668.07 - lr: 0.000044 - momentum: 0.000000
2024-03-26 09:56:38,211 epoch 3 - iter 18/95 - loss 0.20468785 - time (sec): 4.04 - samples/sec: 1796.92 - lr: 0.000043 - momentum: 0.000000
2024-03-26 09:56:39,167 epoch 3 - iter 27/95 - loss 0.22616043 - time (sec): 5.00 - samples/sec: 1925.55 - lr: 0.000043 - momentum: 0.000000
2024-03-26 09:56:40,892 epoch 3 - iter 36/95 - loss 0.22034828 - time (sec): 6.72 - samples/sec: 1887.55 - lr: 0.000042 - momentum: 0.000000
2024-03-26 09:56:42,136 epoch 3 - iter 45/95 - loss 0.22037517 - time (sec): 7.97 - samples/sec: 1933.42 - lr: 0.000042 - momentum: 0.000000
2024-03-26 09:56:44,155 epoch 3 - iter 54/95 - loss 0.21422754 - time (sec): 9.99 - samples/sec: 1872.38 - lr: 0.000041 - momentum: 0.000000
2024-03-26 09:56:45,763 epoch 3 - iter 63/95 - loss 0.20959317 - time (sec): 11.59 - samples/sec: 1882.81 - lr: 0.000041 - momentum: 0.000000
2024-03-26 09:56:47,260 epoch 3 - iter 72/95 - loss 0.20513440 - time (sec): 13.09 - samples/sec: 1892.83 - lr: 0.000040 - momentum: 0.000000
2024-03-26 09:56:49,036 epoch 3 - iter 81/95 - loss 0.19871669 - time (sec): 14.87 - samples/sec: 1880.58 - lr: 0.000040 - momentum: 0.000000
2024-03-26 09:56:51,620 epoch 3 - iter 90/95 - loss 0.18183164 - time (sec): 17.45 - samples/sec: 1874.07 - lr: 0.000039 - momentum: 0.000000
2024-03-26 09:56:52,702 ----------------------------------------------------------------------------------------------------
2024-03-26 09:56:52,702 EPOCH 3 done: loss 0.1792 - lr: 0.000039
2024-03-26 09:56:53,591 DEV : loss 0.22550131380558014 - f1-score (micro avg) 0.8869
2024-03-26 09:56:53,591 saving best model
2024-03-26 09:56:54,016 ----------------------------------------------------------------------------------------------------
2024-03-26 09:56:55,692 epoch 4 - iter 9/95 - loss 0.16564534 - time (sec): 1.67 - samples/sec: 1918.92 - lr: 0.000039 - momentum: 0.000000
2024-03-26 09:56:57,658 epoch 4 - iter 18/95 - loss 0.14460325 - time (sec): 3.64 - samples/sec: 1850.14 - lr: 0.000038 - momentum: 0.000000
2024-03-26 09:56:58,873 epoch 4 - iter 27/95 - loss 0.13705328 - time (sec): 4.86 - samples/sec: 1938.49 - lr: 0.000037 - momentum: 0.000000
2024-03-26 09:57:00,516 epoch 4 - iter 36/95 - loss 0.13381213 - time (sec): 6.50 - samples/sec: 1910.14 - lr: 0.000037 - momentum: 0.000000
2024-03-26 09:57:02,650 epoch 4 - iter 45/95 - loss 0.13001690 - time (sec): 8.63 - samples/sec: 1849.74 - lr: 0.000036 - momentum: 0.000000
2024-03-26 09:57:04,167 epoch 4 - iter 54/95 - loss 0.13595740 - time (sec): 10.15 - samples/sec: 1859.49 - lr: 0.000036 - momentum: 0.000000
2024-03-26 09:57:06,602 epoch 4 - iter 63/95 - loss 0.13274558 - time (sec): 12.58 - samples/sec: 1811.67 - lr: 0.000035 - momentum: 0.000000
2024-03-26 09:57:09,090 epoch 4 - iter 72/95 - loss 0.12565390 - time (sec): 15.07 - samples/sec: 1774.73 - lr: 0.000035 - momentum: 0.000000
2024-03-26 09:57:10,512 epoch 4 - iter 81/95 - loss 0.12269682 - time (sec): 16.49 - samples/sec: 1781.62 - lr: 0.000034 - momentum: 0.000000
2024-03-26 09:57:12,279 epoch 4 - iter 90/95 - loss 0.12294753 - time (sec): 18.26 - samples/sec: 1781.38 - lr: 0.000034 - momentum: 0.000000
2024-03-26 09:57:13,394 ----------------------------------------------------------------------------------------------------
2024-03-26 09:57:13,394 EPOCH 4 done: loss 0.1198 - lr: 0.000034
2024-03-26 09:57:14,288 DEV : loss 0.19063404202461243 - f1-score (micro avg) 0.877
2024-03-26 09:57:14,289 ----------------------------------------------------------------------------------------------------
2024-03-26 09:57:15,247 epoch 5 - iter 9/95 - loss 0.07671720 - time (sec): 0.96 - samples/sec: 2150.56 - lr: 0.000033 - momentum: 0.000000
2024-03-26 09:57:16,837 epoch 5 - iter 18/95 - loss 0.08732704 - time (sec): 2.55 - samples/sec: 2089.09 - lr: 0.000032 - momentum: 0.000000
2024-03-26 09:57:19,294 epoch 5 - iter 27/95 - loss 0.08678902 - time (sec): 5.00 - samples/sec: 1821.53 - lr: 0.000032 - momentum: 0.000000
2024-03-26 09:57:21,118 epoch 5 - iter 36/95 - loss 0.08229238 - time (sec): 6.83 - samples/sec: 1816.91 - lr: 0.000031 - momentum: 0.000000
2024-03-26 09:57:23,067 epoch 5 - iter 45/95 - loss 0.08039814 - time (sec): 8.78 - samples/sec: 1780.80 - lr: 0.000031 - momentum: 0.000000
2024-03-26 09:57:24,661 epoch 5 - iter 54/95 - loss 0.08120875 - time (sec): 10.37 - samples/sec: 1816.90 - lr: 0.000030 - momentum: 0.000000
2024-03-26 09:57:26,989 epoch 5 - iter 63/95 - loss 0.07961933 - time (sec): 12.70 - samples/sec: 1803.60 - lr: 0.000030 - momentum: 0.000000
2024-03-26 09:57:28,389 epoch 5 - iter 72/95 - loss 0.08356768 - time (sec): 14.10 - samples/sec: 1821.80 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:57:30,275 epoch 5 - iter 81/95 - loss 0.08023690 - time (sec): 15.99 - samples/sec: 1796.39 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:57:32,125 epoch 5 - iter 90/95 - loss 0.08106053 - time (sec): 17.84 - samples/sec: 1797.19 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:57:33,476 ----------------------------------------------------------------------------------------------------
2024-03-26 09:57:33,476 EPOCH 5 done: loss 0.0808 - lr: 0.000028
2024-03-26 09:57:34,464 DEV : loss 0.16919878125190735 - f1-score (micro avg) 0.9171
2024-03-26 09:57:34,465 saving best model
2024-03-26 09:57:34,895 ----------------------------------------------------------------------------------------------------
2024-03-26 09:57:36,259 epoch 6 - iter 9/95 - loss 0.05513905 - time (sec): 1.36 - samples/sec: 2113.60 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:57:38,408 epoch 6 - iter 18/95 - loss 0.05798422 - time (sec): 3.51 - samples/sec: 2042.14 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:57:39,966 epoch 6 - iter 27/95 - loss 0.05351134 - time (sec): 5.07 - samples/sec: 1980.67 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:57:41,933 epoch 6 - iter 36/95 - loss 0.05595926 - time (sec): 7.04 - samples/sec: 1918.68 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:57:44,066 epoch 6 - iter 45/95 - loss 0.06826327 - time (sec): 9.17 - samples/sec: 1937.30 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:57:45,252 epoch 6 - iter 54/95 - loss 0.06442393 - time (sec): 10.36 - samples/sec: 1952.25 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:57:46,310 epoch 6 - iter 63/95 - loss 0.06557445 - time (sec): 11.41 - samples/sec: 1972.50 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:57:47,834 epoch 6 - iter 72/95 - loss 0.06074062 - time (sec): 12.94 - samples/sec: 1973.50 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:57:49,828 epoch 6 - iter 81/95 - loss 0.05887365 - time (sec): 14.93 - samples/sec: 1957.97 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:57:51,808 epoch 6 - iter 90/95 - loss 0.05836864 - time (sec): 16.91 - samples/sec: 1944.79 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:57:52,732 ----------------------------------------------------------------------------------------------------
2024-03-26 09:57:52,732 EPOCH 6 done: loss 0.0565 - lr: 0.000023
2024-03-26 09:57:53,630 DEV : loss 0.1597478985786438 - f1-score (micro avg) 0.935
2024-03-26 09:57:53,631 saving best model
2024-03-26 09:57:54,057 ----------------------------------------------------------------------------------------------------
2024-03-26 09:57:55,485 epoch 7 - iter 9/95 - loss 0.03244858 - time (sec): 1.43 - samples/sec: 1864.42 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:57:57,279 epoch 7 - iter 18/95 - loss 0.03958068 - time (sec): 3.22 - samples/sec: 1800.01 - lr: 0.000021 - momentum: 0.000000
2024-03-26 09:57:58,885 epoch 7 - iter 27/95 - loss 0.03643340 - time (sec): 4.82 - samples/sec: 1890.63 - lr: 0.000021 - momentum: 0.000000
2024-03-26 09:58:00,601 epoch 7 - iter 36/95 - loss 0.03750744 - time (sec): 6.54 - samples/sec: 1838.53 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:58:01,955 epoch 7 - iter 45/95 - loss 0.03833106 - time (sec): 7.90 - samples/sec: 1856.99 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:58:04,002 epoch 7 - iter 54/95 - loss 0.03880059 - time (sec): 9.94 - samples/sec: 1803.00 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:58:06,229 epoch 7 - iter 63/95 - loss 0.03928334 - time (sec): 12.17 - samples/sec: 1754.30 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:58:08,782 epoch 7 - iter 72/95 - loss 0.04446132 - time (sec): 14.72 - samples/sec: 1751.07 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:58:10,730 epoch 7 - iter 81/95 - loss 0.04659624 - time (sec): 16.67 - samples/sec: 1758.17 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:58:12,692 epoch 7 - iter 90/95 - loss 0.04764396 - time (sec): 18.63 - samples/sec: 1759.23 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:58:13,582 ----------------------------------------------------------------------------------------------------
2024-03-26 09:58:13,582 EPOCH 7 done: loss 0.0462 - lr: 0.000017
2024-03-26 09:58:14,481 DEV : loss 0.1805838942527771 - f1-score (micro avg) 0.9222
2024-03-26 09:58:14,482 ----------------------------------------------------------------------------------------------------
2024-03-26 09:58:16,739 epoch 8 - iter 9/95 - loss 0.03112277 - time (sec): 2.26 - samples/sec: 1678.52 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:58:18,290 epoch 8 - iter 18/95 - loss 0.03749051 - time (sec): 3.81 - samples/sec: 1809.73 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:58:20,455 epoch 8 - iter 27/95 - loss 0.04423972 - time (sec): 5.97 - samples/sec: 1770.15 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:58:21,995 epoch 8 - iter 36/95 - loss 0.03953226 - time (sec): 7.51 - samples/sec: 1795.95 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:58:23,855 epoch 8 - iter 45/95 - loss 0.03510558 - time (sec): 9.37 - samples/sec: 1776.30 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:58:25,542 epoch 8 - iter 54/95 - loss 0.04168451 - time (sec): 11.06 - samples/sec: 1786.17 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:58:27,341 epoch 8 - iter 63/95 - loss 0.04091545 - time (sec): 12.86 - samples/sec: 1785.80 - lr: 0.000013 - momentum: 0.000000
2024-03-26 09:58:28,638 epoch 8 - iter 72/95 - loss 0.03864673 - time (sec): 14.16 - samples/sec: 1807.18 - lr: 0.000013 - momentum: 0.000000
2024-03-26 09:58:30,461 epoch 8 - iter 81/95 - loss 0.03694964 - time (sec): 15.98 - samples/sec: 1832.46 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:58:32,860 epoch 8 - iter 90/95 - loss 0.03440669 - time (sec): 18.38 - samples/sec: 1794.90 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:58:33,664 ----------------------------------------------------------------------------------------------------
2024-03-26 09:58:33,664 EPOCH 8 done: loss 0.0361 - lr: 0.000012
2024-03-26 09:58:34,570 DEV : loss 0.20250095427036285 - f1-score (micro avg) 0.9227
2024-03-26 09:58:34,571 ----------------------------------------------------------------------------------------------------
2024-03-26 09:58:36,320 epoch 9 - iter 9/95 - loss 0.04686787 - time (sec): 1.75 - samples/sec: 1942.96 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:58:38,509 epoch 9 - iter 18/95 - loss 0.02950774 - time (sec): 3.94 - samples/sec: 1761.42 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:58:40,380 epoch 9 - iter 27/95 - loss 0.03881406 - time (sec): 5.81 - samples/sec: 1796.36 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:58:41,918 epoch 9 - iter 36/95 - loss 0.03710701 - time (sec): 7.35 - samples/sec: 1807.00 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:58:43,318 epoch 9 - iter 45/95 - loss 0.03227612 - time (sec): 8.75 - samples/sec: 1844.24 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:58:44,720 epoch 9 - iter 54/95 - loss 0.02974616 - time (sec): 10.15 - samples/sec: 1895.14 - lr: 0.000008 - momentum: 0.000000
2024-03-26 09:58:46,529 epoch 9 - iter 63/95 - loss 0.03186545 - time (sec): 11.96 - samples/sec: 1900.89 - lr: 0.000008 - momentum: 0.000000
2024-03-26 09:58:48,529 epoch 9 - iter 72/95 - loss 0.03279052 - time (sec): 13.96 - samples/sec: 1871.55 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:58:50,796 epoch 9 - iter 81/95 - loss 0.03338961 - time (sec): 16.22 - samples/sec: 1829.34 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:58:52,521 epoch 9 - iter 90/95 - loss 0.03218886 - time (sec): 17.95 - samples/sec: 1844.02 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:58:53,105 ----------------------------------------------------------------------------------------------------
2024-03-26 09:58:53,105 EPOCH 9 done: loss 0.0313 - lr: 0.000006
2024-03-26 09:58:54,013 DEV : loss 0.194478839635849 - f1-score (micro avg) 0.9333
2024-03-26 09:58:54,016 ----------------------------------------------------------------------------------------------------
2024-03-26 09:58:56,147 epoch 10 - iter 9/95 - loss 0.00307710 - time (sec): 2.13 - samples/sec: 1812.59 - lr: 0.000005 - momentum: 0.000000
2024-03-26 09:58:57,890 epoch 10 - iter 18/95 - loss 0.01367119 - time (sec): 3.87 - samples/sec: 1833.86 - lr: 0.000005 - momentum: 0.000000
2024-03-26 09:58:58,993 epoch 10 - iter 27/95 - loss 0.01197108 - time (sec): 4.98 - samples/sec: 1913.69 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:59:00,434 epoch 10 - iter 36/95 - loss 0.01892848 - time (sec): 6.42 - samples/sec: 1950.84 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:59:02,371 epoch 10 - iter 45/95 - loss 0.02347308 - time (sec): 8.35 - samples/sec: 1889.33 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:59:03,458 epoch 10 - iter 54/95 - loss 0.02477599 - time (sec): 9.44 - samples/sec: 1938.85 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:59:04,679 epoch 10 - iter 63/95 - loss 0.02232245 - time (sec): 10.66 - samples/sec: 1967.89 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:59:06,585 epoch 10 - iter 72/95 - loss 0.02358988 - time (sec): 12.57 - samples/sec: 1964.69 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:59:09,224 epoch 10 - iter 81/95 - loss 0.02309473 - time (sec): 15.21 - samples/sec: 1926.11 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:59:11,224 epoch 10 - iter 90/95 - loss 0.02402159 - time (sec): 17.21 - samples/sec: 1906.77 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:59:12,141 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:12,141 EPOCH 10 done: loss 0.0238 - lr: 0.000001
2024-03-26 09:59:13,096 DEV : loss 0.20281948149204254 - f1-score (micro avg) 0.9285
2024-03-26 09:59:13,379 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:13,380 Loading model from best epoch ...
2024-03-26 09:59:14,264 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 09:59:15,009
Results:
- F-score (micro) 0.9117
- F-score (macro) 0.692
- Accuracy 0.8402
By class:
precision recall f1-score support
Unternehmen 0.9328 0.8872 0.9094 266
Auslagerung 0.8626 0.9076 0.8845 249
Ort 0.9635 0.9851 0.9742 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.9083 0.9153 0.9117 649
macro avg 0.6897 0.6950 0.6920 649
weighted avg 0.9122 0.9153 0.9133 649
2024-03-26 09:59:15,009 ----------------------------------------------------------------------------------------------------
|