File size: 23,769 Bytes
1b196e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
2024-03-26 10:45:09,966 ----------------------------------------------------------------------------------------------------
2024-03-26 10:45:09,966 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(31103, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 10:45:09,966 ----------------------------------------------------------------------------------------------------
2024-03-26 10:45:09,966 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 10:45:09,966 ----------------------------------------------------------------------------------------------------
2024-03-26 10:45:09,966 Train: 758 sentences
2024-03-26 10:45:09,966 (train_with_dev=False, train_with_test=False)
2024-03-26 10:45:09,966 ----------------------------------------------------------------------------------------------------
2024-03-26 10:45:09,966 Training Params:
2024-03-26 10:45:09,966 - learning_rate: "5e-05"
2024-03-26 10:45:09,966 - mini_batch_size: "8"
2024-03-26 10:45:09,966 - max_epochs: "10"
2024-03-26 10:45:09,966 - shuffle: "True"
2024-03-26 10:45:09,967 ----------------------------------------------------------------------------------------------------
2024-03-26 10:45:09,967 Plugins:
2024-03-26 10:45:09,967 - TensorboardLogger
2024-03-26 10:45:09,967 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 10:45:09,967 ----------------------------------------------------------------------------------------------------
2024-03-26 10:45:09,967 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 10:45:09,967 - metric: "('micro avg', 'f1-score')"
2024-03-26 10:45:09,967 ----------------------------------------------------------------------------------------------------
2024-03-26 10:45:09,967 Computation:
2024-03-26 10:45:09,967 - compute on device: cuda:0
2024-03-26 10:45:09,967 - embedding storage: none
2024-03-26 10:45:09,967 ----------------------------------------------------------------------------------------------------
2024-03-26 10:45:09,967 Model training base path: "flair-co-funer-gbert_base-bs8-e10-lr5e-05-5"
2024-03-26 10:45:09,967 ----------------------------------------------------------------------------------------------------
2024-03-26 10:45:09,967 ----------------------------------------------------------------------------------------------------
2024-03-26 10:45:09,967 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 10:45:11,842 epoch 1 - iter 9/95 - loss 3.40476800 - time (sec): 1.87 - samples/sec: 1672.42 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:45:13,726 epoch 1 - iter 18/95 - loss 3.14482635 - time (sec): 3.76 - samples/sec: 1764.79 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:45:16,019 epoch 1 - iter 27/95 - loss 2.87497592 - time (sec): 6.05 - samples/sec: 1713.71 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:45:17,503 epoch 1 - iter 36/95 - loss 2.68868444 - time (sec): 7.54 - samples/sec: 1792.56 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:45:19,648 epoch 1 - iter 45/95 - loss 2.50863173 - time (sec): 9.68 - samples/sec: 1775.18 - lr: 0.000023 - momentum: 0.000000
2024-03-26 10:45:21,225 epoch 1 - iter 54/95 - loss 2.33901067 - time (sec): 11.26 - samples/sec: 1797.28 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:45:22,866 epoch 1 - iter 63/95 - loss 2.19277919 - time (sec): 12.90 - samples/sec: 1814.29 - lr: 0.000033 - momentum: 0.000000
2024-03-26 10:45:24,750 epoch 1 - iter 72/95 - loss 2.04776243 - time (sec): 14.78 - samples/sec: 1806.01 - lr: 0.000037 - momentum: 0.000000
2024-03-26 10:45:26,812 epoch 1 - iter 81/95 - loss 1.89776627 - time (sec): 16.85 - samples/sec: 1789.76 - lr: 0.000042 - momentum: 0.000000
2024-03-26 10:45:28,446 epoch 1 - iter 90/95 - loss 1.78488952 - time (sec): 18.48 - samples/sec: 1781.78 - lr: 0.000047 - momentum: 0.000000
2024-03-26 10:45:29,199 ----------------------------------------------------------------------------------------------------
2024-03-26 10:45:29,199 EPOCH 1 done: loss 1.7294 - lr: 0.000047
2024-03-26 10:45:30,025 DEV : loss 0.4357704520225525 - f1-score (micro avg) 0.6862
2024-03-26 10:45:30,026 saving best model
2024-03-26 10:45:30,316 ----------------------------------------------------------------------------------------------------
2024-03-26 10:45:32,580 epoch 2 - iter 9/95 - loss 0.52047333 - time (sec): 2.26 - samples/sec: 1685.56 - lr: 0.000050 - momentum: 0.000000
2024-03-26 10:45:34,500 epoch 2 - iter 18/95 - loss 0.47727333 - time (sec): 4.18 - samples/sec: 1671.94 - lr: 0.000049 - momentum: 0.000000
2024-03-26 10:45:36,830 epoch 2 - iter 27/95 - loss 0.42420900 - time (sec): 6.51 - samples/sec: 1642.22 - lr: 0.000048 - momentum: 0.000000
2024-03-26 10:45:38,199 epoch 2 - iter 36/95 - loss 0.41117217 - time (sec): 7.88 - samples/sec: 1753.17 - lr: 0.000048 - momentum: 0.000000
2024-03-26 10:45:40,147 epoch 2 - iter 45/95 - loss 0.38005126 - time (sec): 9.83 - samples/sec: 1716.83 - lr: 0.000047 - momentum: 0.000000
2024-03-26 10:45:41,463 epoch 2 - iter 54/95 - loss 0.37659104 - time (sec): 11.15 - samples/sec: 1763.25 - lr: 0.000047 - momentum: 0.000000
2024-03-26 10:45:43,037 epoch 2 - iter 63/95 - loss 0.36250726 - time (sec): 12.72 - samples/sec: 1779.04 - lr: 0.000046 - momentum: 0.000000
2024-03-26 10:45:45,111 epoch 2 - iter 72/95 - loss 0.35529566 - time (sec): 14.79 - samples/sec: 1771.61 - lr: 0.000046 - momentum: 0.000000
2024-03-26 10:45:47,033 epoch 2 - iter 81/95 - loss 0.36371319 - time (sec): 16.72 - samples/sec: 1770.30 - lr: 0.000045 - momentum: 0.000000
2024-03-26 10:45:48,968 epoch 2 - iter 90/95 - loss 0.35037735 - time (sec): 18.65 - samples/sec: 1773.33 - lr: 0.000045 - momentum: 0.000000
2024-03-26 10:45:49,542 ----------------------------------------------------------------------------------------------------
2024-03-26 10:45:49,542 EPOCH 2 done: loss 0.3500 - lr: 0.000045
2024-03-26 10:45:50,439 DEV : loss 0.2682156562805176 - f1-score (micro avg) 0.8339
2024-03-26 10:45:50,440 saving best model
2024-03-26 10:45:50,864 ----------------------------------------------------------------------------------------------------
2024-03-26 10:45:52,083 epoch 3 - iter 9/95 - loss 0.26780059 - time (sec): 1.22 - samples/sec: 2130.20 - lr: 0.000044 - momentum: 0.000000
2024-03-26 10:45:54,395 epoch 3 - iter 18/95 - loss 0.22616209 - time (sec): 3.53 - samples/sec: 1818.98 - lr: 0.000043 - momentum: 0.000000
2024-03-26 10:45:56,091 epoch 3 - iter 27/95 - loss 0.23208566 - time (sec): 5.22 - samples/sec: 1867.58 - lr: 0.000043 - momentum: 0.000000
2024-03-26 10:45:57,779 epoch 3 - iter 36/95 - loss 0.21819078 - time (sec): 6.91 - samples/sec: 1904.95 - lr: 0.000042 - momentum: 0.000000
2024-03-26 10:45:59,221 epoch 3 - iter 45/95 - loss 0.20710332 - time (sec): 8.36 - samples/sec: 1900.72 - lr: 0.000042 - momentum: 0.000000
2024-03-26 10:46:01,327 epoch 3 - iter 54/95 - loss 0.19913518 - time (sec): 10.46 - samples/sec: 1846.61 - lr: 0.000041 - momentum: 0.000000
2024-03-26 10:46:02,997 epoch 3 - iter 63/95 - loss 0.19480733 - time (sec): 12.13 - samples/sec: 1834.76 - lr: 0.000041 - momentum: 0.000000
2024-03-26 10:46:05,260 epoch 3 - iter 72/95 - loss 0.18974922 - time (sec): 14.39 - samples/sec: 1802.02 - lr: 0.000040 - momentum: 0.000000
2024-03-26 10:46:07,425 epoch 3 - iter 81/95 - loss 0.19095483 - time (sec): 16.56 - samples/sec: 1797.60 - lr: 0.000040 - momentum: 0.000000
2024-03-26 10:46:09,176 epoch 3 - iter 90/95 - loss 0.18550780 - time (sec): 18.31 - samples/sec: 1787.02 - lr: 0.000039 - momentum: 0.000000
2024-03-26 10:46:10,044 ----------------------------------------------------------------------------------------------------
2024-03-26 10:46:10,044 EPOCH 3 done: loss 0.1844 - lr: 0.000039
2024-03-26 10:46:10,947 DEV : loss 0.24703261256217957 - f1-score (micro avg) 0.855
2024-03-26 10:46:10,947 saving best model
2024-03-26 10:46:11,444 ----------------------------------------------------------------------------------------------------
2024-03-26 10:46:14,220 epoch 4 - iter 9/95 - loss 0.10523460 - time (sec): 2.77 - samples/sec: 1538.62 - lr: 0.000039 - momentum: 0.000000
2024-03-26 10:46:15,257 epoch 4 - iter 18/95 - loss 0.13184327 - time (sec): 3.81 - samples/sec: 1746.28 - lr: 0.000038 - momentum: 0.000000
2024-03-26 10:46:17,747 epoch 4 - iter 27/95 - loss 0.11703814 - time (sec): 6.30 - samples/sec: 1688.16 - lr: 0.000037 - momentum: 0.000000
2024-03-26 10:46:20,345 epoch 4 - iter 36/95 - loss 0.11749788 - time (sec): 8.90 - samples/sec: 1630.81 - lr: 0.000037 - momentum: 0.000000
2024-03-26 10:46:22,047 epoch 4 - iter 45/95 - loss 0.10936671 - time (sec): 10.60 - samples/sec: 1661.40 - lr: 0.000036 - momentum: 0.000000
2024-03-26 10:46:23,750 epoch 4 - iter 54/95 - loss 0.10799577 - time (sec): 12.30 - samples/sec: 1674.24 - lr: 0.000036 - momentum: 0.000000
2024-03-26 10:46:25,652 epoch 4 - iter 63/95 - loss 0.11015899 - time (sec): 14.21 - samples/sec: 1700.40 - lr: 0.000035 - momentum: 0.000000
2024-03-26 10:46:27,322 epoch 4 - iter 72/95 - loss 0.11128318 - time (sec): 15.88 - samples/sec: 1748.34 - lr: 0.000035 - momentum: 0.000000
2024-03-26 10:46:28,354 epoch 4 - iter 81/95 - loss 0.11258121 - time (sec): 16.91 - samples/sec: 1786.99 - lr: 0.000034 - momentum: 0.000000
2024-03-26 10:46:29,751 epoch 4 - iter 90/95 - loss 0.11335549 - time (sec): 18.31 - samples/sec: 1813.05 - lr: 0.000034 - momentum: 0.000000
2024-03-26 10:46:30,283 ----------------------------------------------------------------------------------------------------
2024-03-26 10:46:30,284 EPOCH 4 done: loss 0.1157 - lr: 0.000034
2024-03-26 10:46:31,185 DEV : loss 0.1816115528345108 - f1-score (micro avg) 0.8905
2024-03-26 10:46:31,185 saving best model
2024-03-26 10:46:31,667 ----------------------------------------------------------------------------------------------------
2024-03-26 10:46:33,307 epoch 5 - iter 9/95 - loss 0.11400357 - time (sec): 1.64 - samples/sec: 1999.32 - lr: 0.000033 - momentum: 0.000000
2024-03-26 10:46:35,270 epoch 5 - iter 18/95 - loss 0.09404016 - time (sec): 3.60 - samples/sec: 1977.31 - lr: 0.000032 - momentum: 0.000000
2024-03-26 10:46:37,387 epoch 5 - iter 27/95 - loss 0.07875278 - time (sec): 5.72 - samples/sec: 1851.46 - lr: 0.000032 - momentum: 0.000000
2024-03-26 10:46:38,711 epoch 5 - iter 36/95 - loss 0.08929817 - time (sec): 7.04 - samples/sec: 1909.11 - lr: 0.000031 - momentum: 0.000000
2024-03-26 10:46:40,790 epoch 5 - iter 45/95 - loss 0.08692335 - time (sec): 9.12 - samples/sec: 1868.06 - lr: 0.000031 - momentum: 0.000000
2024-03-26 10:46:41,966 epoch 5 - iter 54/95 - loss 0.08984232 - time (sec): 10.30 - samples/sec: 1901.42 - lr: 0.000030 - momentum: 0.000000
2024-03-26 10:46:43,434 epoch 5 - iter 63/95 - loss 0.09315014 - time (sec): 11.77 - samples/sec: 1916.15 - lr: 0.000030 - momentum: 0.000000
2024-03-26 10:46:45,346 epoch 5 - iter 72/95 - loss 0.09260548 - time (sec): 13.68 - samples/sec: 1888.07 - lr: 0.000029 - momentum: 0.000000
2024-03-26 10:46:47,105 epoch 5 - iter 81/95 - loss 0.09102178 - time (sec): 15.44 - samples/sec: 1876.45 - lr: 0.000029 - momentum: 0.000000
2024-03-26 10:46:49,506 epoch 5 - iter 90/95 - loss 0.08955795 - time (sec): 17.84 - samples/sec: 1843.26 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:46:50,472 ----------------------------------------------------------------------------------------------------
2024-03-26 10:46:50,472 EPOCH 5 done: loss 0.0873 - lr: 0.000028
2024-03-26 10:46:51,369 DEV : loss 0.2073821723461151 - f1-score (micro avg) 0.8891
2024-03-26 10:46:51,370 ----------------------------------------------------------------------------------------------------
2024-03-26 10:46:53,310 epoch 6 - iter 9/95 - loss 0.06490025 - time (sec): 1.94 - samples/sec: 1680.45 - lr: 0.000027 - momentum: 0.000000
2024-03-26 10:46:55,746 epoch 6 - iter 18/95 - loss 0.07018426 - time (sec): 4.38 - samples/sec: 1694.31 - lr: 0.000027 - momentum: 0.000000
2024-03-26 10:46:56,900 epoch 6 - iter 27/95 - loss 0.08971755 - time (sec): 5.53 - samples/sec: 1787.62 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:46:58,504 epoch 6 - iter 36/95 - loss 0.08177094 - time (sec): 7.13 - samples/sec: 1808.76 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:47:00,439 epoch 6 - iter 45/95 - loss 0.07622431 - time (sec): 9.07 - samples/sec: 1801.35 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:47:02,578 epoch 6 - iter 54/95 - loss 0.07246962 - time (sec): 11.21 - samples/sec: 1765.45 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:47:04,260 epoch 6 - iter 63/95 - loss 0.07253559 - time (sec): 12.89 - samples/sec: 1781.84 - lr: 0.000024 - momentum: 0.000000
2024-03-26 10:47:05,812 epoch 6 - iter 72/95 - loss 0.07235842 - time (sec): 14.44 - samples/sec: 1803.22 - lr: 0.000024 - momentum: 0.000000
2024-03-26 10:47:07,044 epoch 6 - iter 81/95 - loss 0.07052301 - time (sec): 15.67 - samples/sec: 1833.84 - lr: 0.000023 - momentum: 0.000000
2024-03-26 10:47:08,914 epoch 6 - iter 90/95 - loss 0.06692717 - time (sec): 17.54 - samples/sec: 1831.47 - lr: 0.000023 - momentum: 0.000000
2024-03-26 10:47:10,426 ----------------------------------------------------------------------------------------------------
2024-03-26 10:47:10,426 EPOCH 6 done: loss 0.0643 - lr: 0.000023
2024-03-26 10:47:11,339 DEV : loss 0.1831476390361786 - f1-score (micro avg) 0.9163
2024-03-26 10:47:11,341 saving best model
2024-03-26 10:47:11,849 ----------------------------------------------------------------------------------------------------
2024-03-26 10:47:13,513 epoch 7 - iter 9/95 - loss 0.03474363 - time (sec): 1.66 - samples/sec: 1892.57 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:47:15,001 epoch 7 - iter 18/95 - loss 0.04622635 - time (sec): 3.15 - samples/sec: 1866.44 - lr: 0.000021 - momentum: 0.000000
2024-03-26 10:47:16,389 epoch 7 - iter 27/95 - loss 0.05885735 - time (sec): 4.54 - samples/sec: 1865.33 - lr: 0.000021 - momentum: 0.000000
2024-03-26 10:47:18,625 epoch 7 - iter 36/95 - loss 0.05082974 - time (sec): 6.78 - samples/sec: 1875.84 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:47:20,539 epoch 7 - iter 45/95 - loss 0.05326851 - time (sec): 8.69 - samples/sec: 1873.99 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:47:22,218 epoch 7 - iter 54/95 - loss 0.05190215 - time (sec): 10.37 - samples/sec: 1870.24 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:47:23,762 epoch 7 - iter 63/95 - loss 0.05035584 - time (sec): 11.91 - samples/sec: 1892.08 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:47:25,270 epoch 7 - iter 72/95 - loss 0.05035426 - time (sec): 13.42 - samples/sec: 1883.43 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:47:27,978 epoch 7 - iter 81/95 - loss 0.04799126 - time (sec): 16.13 - samples/sec: 1821.55 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:47:29,584 epoch 7 - iter 90/95 - loss 0.04814565 - time (sec): 17.73 - samples/sec: 1831.24 - lr: 0.000017 - momentum: 0.000000
2024-03-26 10:47:30,756 ----------------------------------------------------------------------------------------------------
2024-03-26 10:47:30,756 EPOCH 7 done: loss 0.0469 - lr: 0.000017
2024-03-26 10:47:31,668 DEV : loss 0.20823831856250763 - f1-score (micro avg) 0.9111
2024-03-26 10:47:31,670 ----------------------------------------------------------------------------------------------------
2024-03-26 10:47:33,828 epoch 8 - iter 9/95 - loss 0.04578165 - time (sec): 2.16 - samples/sec: 1566.09 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:47:35,339 epoch 8 - iter 18/95 - loss 0.03518377 - time (sec): 3.67 - samples/sec: 1663.23 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:47:37,327 epoch 8 - iter 27/95 - loss 0.03932391 - time (sec): 5.66 - samples/sec: 1734.34 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:47:39,294 epoch 8 - iter 36/95 - loss 0.03690593 - time (sec): 7.62 - samples/sec: 1765.82 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:47:40,714 epoch 8 - iter 45/95 - loss 0.03555396 - time (sec): 9.04 - samples/sec: 1819.70 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:47:42,199 epoch 8 - iter 54/95 - loss 0.03629148 - time (sec): 10.53 - samples/sec: 1887.44 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:47:43,778 epoch 8 - iter 63/95 - loss 0.03665286 - time (sec): 12.11 - samples/sec: 1878.15 - lr: 0.000013 - momentum: 0.000000
2024-03-26 10:47:45,866 epoch 8 - iter 72/95 - loss 0.03495998 - time (sec): 14.20 - samples/sec: 1844.37 - lr: 0.000013 - momentum: 0.000000
2024-03-26 10:47:47,429 epoch 8 - iter 81/95 - loss 0.03616178 - time (sec): 15.76 - samples/sec: 1868.49 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:47:49,493 epoch 8 - iter 90/95 - loss 0.03584999 - time (sec): 17.82 - samples/sec: 1844.78 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:47:50,135 ----------------------------------------------------------------------------------------------------
2024-03-26 10:47:50,135 EPOCH 8 done: loss 0.0355 - lr: 0.000012
2024-03-26 10:47:51,048 DEV : loss 0.18582023680210114 - f1-score (micro avg) 0.9237
2024-03-26 10:47:51,049 saving best model
2024-03-26 10:47:51,516 ----------------------------------------------------------------------------------------------------
2024-03-26 10:47:54,058 epoch 9 - iter 9/95 - loss 0.01804784 - time (sec): 2.54 - samples/sec: 1697.92 - lr: 0.000011 - momentum: 0.000000
2024-03-26 10:47:55,622 epoch 9 - iter 18/95 - loss 0.02575402 - time (sec): 4.10 - samples/sec: 1761.89 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:47:58,103 epoch 9 - iter 27/95 - loss 0.02713474 - time (sec): 6.59 - samples/sec: 1716.53 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:47:59,921 epoch 9 - iter 36/95 - loss 0.03071684 - time (sec): 8.40 - samples/sec: 1724.52 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:48:01,085 epoch 9 - iter 45/95 - loss 0.02979760 - time (sec): 9.57 - samples/sec: 1782.86 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:48:02,835 epoch 9 - iter 54/95 - loss 0.02644262 - time (sec): 11.32 - samples/sec: 1772.87 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:48:04,233 epoch 9 - iter 63/95 - loss 0.02858852 - time (sec): 12.72 - samples/sec: 1816.71 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:48:05,406 epoch 9 - iter 72/95 - loss 0.02824175 - time (sec): 13.89 - samples/sec: 1865.41 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:48:06,937 epoch 9 - iter 81/95 - loss 0.02648636 - time (sec): 15.42 - samples/sec: 1863.01 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:48:09,683 epoch 9 - iter 90/95 - loss 0.02833540 - time (sec): 18.17 - samples/sec: 1815.23 - lr: 0.000006 - momentum: 0.000000
2024-03-26 10:48:10,449 ----------------------------------------------------------------------------------------------------
2024-03-26 10:48:10,449 EPOCH 9 done: loss 0.0274 - lr: 0.000006
2024-03-26 10:48:11,383 DEV : loss 0.19166618585586548 - f1-score (micro avg) 0.9304
2024-03-26 10:48:11,384 saving best model
2024-03-26 10:48:11,875 ----------------------------------------------------------------------------------------------------
2024-03-26 10:48:14,339 epoch 10 - iter 9/95 - loss 0.01910654 - time (sec): 2.46 - samples/sec: 1639.28 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:48:15,920 epoch 10 - iter 18/95 - loss 0.01670295 - time (sec): 4.04 - samples/sec: 1724.49 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:48:17,881 epoch 10 - iter 27/95 - loss 0.01753978 - time (sec): 6.00 - samples/sec: 1678.44 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:48:19,886 epoch 10 - iter 36/95 - loss 0.01982955 - time (sec): 8.01 - samples/sec: 1703.88 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:48:21,752 epoch 10 - iter 45/95 - loss 0.01704063 - time (sec): 9.87 - samples/sec: 1717.78 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:48:22,878 epoch 10 - iter 54/95 - loss 0.01803494 - time (sec): 11.00 - samples/sec: 1780.87 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:48:24,504 epoch 10 - iter 63/95 - loss 0.02231773 - time (sec): 12.63 - samples/sec: 1802.17 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:48:26,323 epoch 10 - iter 72/95 - loss 0.02212617 - time (sec): 14.45 - samples/sec: 1790.82 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:48:27,998 epoch 10 - iter 81/95 - loss 0.02345921 - time (sec): 16.12 - samples/sec: 1801.11 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:48:30,771 epoch 10 - iter 90/95 - loss 0.02165914 - time (sec): 18.89 - samples/sec: 1764.48 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:48:31,339 ----------------------------------------------------------------------------------------------------
2024-03-26 10:48:31,339 EPOCH 10 done: loss 0.0221 - lr: 0.000001
2024-03-26 10:48:32,266 DEV : loss 0.1952328383922577 - f1-score (micro avg) 0.9342
2024-03-26 10:48:32,267 saving best model
2024-03-26 10:48:33,061 ----------------------------------------------------------------------------------------------------
2024-03-26 10:48:33,062 Loading model from best epoch ...
2024-03-26 10:48:34,008 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 10:48:34,853
Results:
- F-score (micro) 0.911
- F-score (macro) 0.692
- Accuracy 0.8402
By class:
precision recall f1-score support
Unternehmen 0.9255 0.8872 0.9060 266
Auslagerung 0.8654 0.9036 0.8841 249
Ort 0.9638 0.9925 0.9779 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.9069 0.9153 0.9110 649
macro avg 0.6887 0.6958 0.6920 649
weighted avg 0.9103 0.9153 0.9124 649
2024-03-26 10:48:34,853 ----------------------------------------------------------------------------------------------------
|