File size: 23,779 Bytes
f5b5899 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
2024-03-26 12:16:08,752 ----------------------------------------------------------------------------------------------------
2024-03-26 12:16:08,752 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(30001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 12:16:08,752 ----------------------------------------------------------------------------------------------------
2024-03-26 12:16:08,752 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 12:16:08,752 ----------------------------------------------------------------------------------------------------
2024-03-26 12:16:08,752 Train: 758 sentences
2024-03-26 12:16:08,752 (train_with_dev=False, train_with_test=False)
2024-03-26 12:16:08,752 ----------------------------------------------------------------------------------------------------
2024-03-26 12:16:08,752 Training Params:
2024-03-26 12:16:08,752 - learning_rate: "5e-05"
2024-03-26 12:16:08,752 - mini_batch_size: "8"
2024-03-26 12:16:08,752 - max_epochs: "10"
2024-03-26 12:16:08,752 - shuffle: "True"
2024-03-26 12:16:08,752 ----------------------------------------------------------------------------------------------------
2024-03-26 12:16:08,752 Plugins:
2024-03-26 12:16:08,752 - TensorboardLogger
2024-03-26 12:16:08,752 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 12:16:08,752 ----------------------------------------------------------------------------------------------------
2024-03-26 12:16:08,752 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 12:16:08,752 - metric: "('micro avg', 'f1-score')"
2024-03-26 12:16:08,752 ----------------------------------------------------------------------------------------------------
2024-03-26 12:16:08,752 Computation:
2024-03-26 12:16:08,752 - compute on device: cuda:0
2024-03-26 12:16:08,752 - embedding storage: none
2024-03-26 12:16:08,752 ----------------------------------------------------------------------------------------------------
2024-03-26 12:16:08,752 Model training base path: "flair-co-funer-german_bert_base-bs8-e10-lr5e-05-5"
2024-03-26 12:16:08,752 ----------------------------------------------------------------------------------------------------
2024-03-26 12:16:08,752 ----------------------------------------------------------------------------------------------------
2024-03-26 12:16:08,753 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 12:16:10,658 epoch 1 - iter 9/95 - loss 3.11198415 - time (sec): 1.91 - samples/sec: 1645.31 - lr: 0.000004 - momentum: 0.000000
2024-03-26 12:16:12,565 epoch 1 - iter 18/95 - loss 2.93717664 - time (sec): 3.81 - samples/sec: 1739.78 - lr: 0.000009 - momentum: 0.000000
2024-03-26 12:16:14,989 epoch 1 - iter 27/95 - loss 2.69525162 - time (sec): 6.24 - samples/sec: 1663.01 - lr: 0.000014 - momentum: 0.000000
2024-03-26 12:16:16,504 epoch 1 - iter 36/95 - loss 2.50040802 - time (sec): 7.75 - samples/sec: 1742.82 - lr: 0.000018 - momentum: 0.000000
2024-03-26 12:16:18,693 epoch 1 - iter 45/95 - loss 2.31776846 - time (sec): 9.94 - samples/sec: 1728.92 - lr: 0.000023 - momentum: 0.000000
2024-03-26 12:16:20,306 epoch 1 - iter 54/95 - loss 2.14521065 - time (sec): 11.55 - samples/sec: 1751.33 - lr: 0.000028 - momentum: 0.000000
2024-03-26 12:16:21,980 epoch 1 - iter 63/95 - loss 1.99301232 - time (sec): 13.23 - samples/sec: 1769.35 - lr: 0.000033 - momentum: 0.000000
2024-03-26 12:16:23,916 epoch 1 - iter 72/95 - loss 1.84828066 - time (sec): 15.16 - samples/sec: 1760.81 - lr: 0.000037 - momentum: 0.000000
2024-03-26 12:16:26,005 epoch 1 - iter 81/95 - loss 1.70543233 - time (sec): 17.25 - samples/sec: 1747.54 - lr: 0.000042 - momentum: 0.000000
2024-03-26 12:16:27,656 epoch 1 - iter 90/95 - loss 1.60560457 - time (sec): 18.90 - samples/sec: 1741.84 - lr: 0.000047 - momentum: 0.000000
2024-03-26 12:16:28,437 ----------------------------------------------------------------------------------------------------
2024-03-26 12:16:28,437 EPOCH 1 done: loss 1.5561 - lr: 0.000047
2024-03-26 12:16:29,291 DEV : loss 0.3953661024570465 - f1-score (micro avg) 0.7299
2024-03-26 12:16:29,292 saving best model
2024-03-26 12:16:29,557 ----------------------------------------------------------------------------------------------------
2024-03-26 12:16:31,857 epoch 2 - iter 9/95 - loss 0.42411772 - time (sec): 2.30 - samples/sec: 1659.61 - lr: 0.000050 - momentum: 0.000000
2024-03-26 12:16:33,790 epoch 2 - iter 18/95 - loss 0.40210576 - time (sec): 4.23 - samples/sec: 1652.57 - lr: 0.000049 - momentum: 0.000000
2024-03-26 12:16:36,173 epoch 2 - iter 27/95 - loss 0.37000509 - time (sec): 6.62 - samples/sec: 1616.94 - lr: 0.000048 - momentum: 0.000000
2024-03-26 12:16:37,537 epoch 2 - iter 36/95 - loss 0.36304993 - time (sec): 7.98 - samples/sec: 1731.82 - lr: 0.000048 - momentum: 0.000000
2024-03-26 12:16:39,517 epoch 2 - iter 45/95 - loss 0.34645812 - time (sec): 9.96 - samples/sec: 1694.75 - lr: 0.000047 - momentum: 0.000000
2024-03-26 12:16:40,851 epoch 2 - iter 54/95 - loss 0.34203299 - time (sec): 11.29 - samples/sec: 1740.46 - lr: 0.000047 - momentum: 0.000000
2024-03-26 12:16:42,447 epoch 2 - iter 63/95 - loss 0.33030418 - time (sec): 12.89 - samples/sec: 1755.81 - lr: 0.000046 - momentum: 0.000000
2024-03-26 12:16:44,546 epoch 2 - iter 72/95 - loss 0.32731874 - time (sec): 14.99 - samples/sec: 1748.69 - lr: 0.000046 - momentum: 0.000000
2024-03-26 12:16:46,462 epoch 2 - iter 81/95 - loss 0.33534075 - time (sec): 16.90 - samples/sec: 1750.65 - lr: 0.000045 - momentum: 0.000000
2024-03-26 12:16:48,417 epoch 2 - iter 90/95 - loss 0.32353294 - time (sec): 18.86 - samples/sec: 1753.84 - lr: 0.000045 - momentum: 0.000000
2024-03-26 12:16:48,995 ----------------------------------------------------------------------------------------------------
2024-03-26 12:16:48,995 EPOCH 2 done: loss 0.3240 - lr: 0.000045
2024-03-26 12:16:49,916 DEV : loss 0.2869855463504791 - f1-score (micro avg) 0.8389
2024-03-26 12:16:49,917 saving best model
2024-03-26 12:16:50,346 ----------------------------------------------------------------------------------------------------
2024-03-26 12:16:51,570 epoch 3 - iter 9/95 - loss 0.27417263 - time (sec): 1.22 - samples/sec: 2120.71 - lr: 0.000044 - momentum: 0.000000
2024-03-26 12:16:53,842 epoch 3 - iter 18/95 - loss 0.21977563 - time (sec): 3.49 - samples/sec: 1837.05 - lr: 0.000043 - momentum: 0.000000
2024-03-26 12:16:55,561 epoch 3 - iter 27/95 - loss 0.22232998 - time (sec): 5.21 - samples/sec: 1871.79 - lr: 0.000043 - momentum: 0.000000
2024-03-26 12:16:57,399 epoch 3 - iter 36/95 - loss 0.21205041 - time (sec): 7.05 - samples/sec: 1867.67 - lr: 0.000042 - momentum: 0.000000
2024-03-26 12:16:58,861 epoch 3 - iter 45/95 - loss 0.19668558 - time (sec): 8.51 - samples/sec: 1865.50 - lr: 0.000042 - momentum: 0.000000
2024-03-26 12:17:01,066 epoch 3 - iter 54/95 - loss 0.19132023 - time (sec): 10.72 - samples/sec: 1802.40 - lr: 0.000041 - momentum: 0.000000
2024-03-26 12:17:02,798 epoch 3 - iter 63/95 - loss 0.19343591 - time (sec): 12.45 - samples/sec: 1787.69 - lr: 0.000041 - momentum: 0.000000
2024-03-26 12:17:05,134 epoch 3 - iter 72/95 - loss 0.18645392 - time (sec): 14.79 - samples/sec: 1754.33 - lr: 0.000040 - momentum: 0.000000
2024-03-26 12:17:07,392 epoch 3 - iter 81/95 - loss 0.18633466 - time (sec): 17.04 - samples/sec: 1746.40 - lr: 0.000040 - momentum: 0.000000
2024-03-26 12:17:09,149 epoch 3 - iter 90/95 - loss 0.18210534 - time (sec): 18.80 - samples/sec: 1740.35 - lr: 0.000039 - momentum: 0.000000
2024-03-26 12:17:10,046 ----------------------------------------------------------------------------------------------------
2024-03-26 12:17:10,046 EPOCH 3 done: loss 0.1812 - lr: 0.000039
2024-03-26 12:17:10,972 DEV : loss 0.23773233592510223 - f1-score (micro avg) 0.874
2024-03-26 12:17:10,973 saving best model
2024-03-26 12:17:11,406 ----------------------------------------------------------------------------------------------------
2024-03-26 12:17:14,332 epoch 4 - iter 9/95 - loss 0.09110161 - time (sec): 2.92 - samples/sec: 1458.90 - lr: 0.000039 - momentum: 0.000000
2024-03-26 12:17:15,394 epoch 4 - iter 18/95 - loss 0.11946256 - time (sec): 3.99 - samples/sec: 1669.22 - lr: 0.000038 - momentum: 0.000000
2024-03-26 12:17:18,006 epoch 4 - iter 27/95 - loss 0.11225660 - time (sec): 6.60 - samples/sec: 1612.05 - lr: 0.000037 - momentum: 0.000000
2024-03-26 12:17:20,657 epoch 4 - iter 36/95 - loss 0.10969523 - time (sec): 9.25 - samples/sec: 1568.83 - lr: 0.000037 - momentum: 0.000000
2024-03-26 12:17:22,378 epoch 4 - iter 45/95 - loss 0.10414682 - time (sec): 10.97 - samples/sec: 1605.33 - lr: 0.000036 - momentum: 0.000000
2024-03-26 12:17:24,113 epoch 4 - iter 54/95 - loss 0.10683855 - time (sec): 12.71 - samples/sec: 1621.28 - lr: 0.000036 - momentum: 0.000000
2024-03-26 12:17:26,080 epoch 4 - iter 63/95 - loss 0.10871462 - time (sec): 14.67 - samples/sec: 1646.34 - lr: 0.000035 - momentum: 0.000000
2024-03-26 12:17:27,836 epoch 4 - iter 72/95 - loss 0.11330020 - time (sec): 16.43 - samples/sec: 1689.44 - lr: 0.000035 - momentum: 0.000000
2024-03-26 12:17:28,871 epoch 4 - iter 81/95 - loss 0.11517013 - time (sec): 17.46 - samples/sec: 1730.13 - lr: 0.000034 - momentum: 0.000000
2024-03-26 12:17:30,331 epoch 4 - iter 90/95 - loss 0.11512696 - time (sec): 18.92 - samples/sec: 1753.74 - lr: 0.000034 - momentum: 0.000000
2024-03-26 12:17:30,885 ----------------------------------------------------------------------------------------------------
2024-03-26 12:17:30,885 EPOCH 4 done: loss 0.1159 - lr: 0.000034
2024-03-26 12:17:31,816 DEV : loss 0.1792612224817276 - f1-score (micro avg) 0.8988
2024-03-26 12:17:31,817 saving best model
2024-03-26 12:17:32,249 ----------------------------------------------------------------------------------------------------
2024-03-26 12:17:33,905 epoch 5 - iter 9/95 - loss 0.10687482 - time (sec): 1.65 - samples/sec: 1979.76 - lr: 0.000033 - momentum: 0.000000
2024-03-26 12:17:35,911 epoch 5 - iter 18/95 - loss 0.08268843 - time (sec): 3.66 - samples/sec: 1945.00 - lr: 0.000032 - momentum: 0.000000
2024-03-26 12:17:38,085 epoch 5 - iter 27/95 - loss 0.07045579 - time (sec): 5.83 - samples/sec: 1814.52 - lr: 0.000032 - momentum: 0.000000
2024-03-26 12:17:39,453 epoch 5 - iter 36/95 - loss 0.08169072 - time (sec): 7.20 - samples/sec: 1866.69 - lr: 0.000031 - momentum: 0.000000
2024-03-26 12:17:41,576 epoch 5 - iter 45/95 - loss 0.07912089 - time (sec): 9.33 - samples/sec: 1827.05 - lr: 0.000031 - momentum: 0.000000
2024-03-26 12:17:42,773 epoch 5 - iter 54/95 - loss 0.08168215 - time (sec): 10.52 - samples/sec: 1860.75 - lr: 0.000030 - momentum: 0.000000
2024-03-26 12:17:44,288 epoch 5 - iter 63/95 - loss 0.08776931 - time (sec): 12.04 - samples/sec: 1872.91 - lr: 0.000030 - momentum: 0.000000
2024-03-26 12:17:46,330 epoch 5 - iter 72/95 - loss 0.08910227 - time (sec): 14.08 - samples/sec: 1834.21 - lr: 0.000029 - momentum: 0.000000
2024-03-26 12:17:48,138 epoch 5 - iter 81/95 - loss 0.08562803 - time (sec): 15.89 - samples/sec: 1823.20 - lr: 0.000029 - momentum: 0.000000
2024-03-26 12:17:50,604 epoch 5 - iter 90/95 - loss 0.08505748 - time (sec): 18.35 - samples/sec: 1791.38 - lr: 0.000028 - momentum: 0.000000
2024-03-26 12:17:51,604 ----------------------------------------------------------------------------------------------------
2024-03-26 12:17:51,604 EPOCH 5 done: loss 0.0832 - lr: 0.000028
2024-03-26 12:17:52,535 DEV : loss 0.19528663158416748 - f1-score (micro avg) 0.902
2024-03-26 12:17:52,536 saving best model
2024-03-26 12:17:52,967 ----------------------------------------------------------------------------------------------------
2024-03-26 12:17:54,978 epoch 6 - iter 9/95 - loss 0.07127974 - time (sec): 2.01 - samples/sec: 1623.06 - lr: 0.000027 - momentum: 0.000000
2024-03-26 12:17:57,485 epoch 6 - iter 18/95 - loss 0.07270535 - time (sec): 4.52 - samples/sec: 1641.86 - lr: 0.000027 - momentum: 0.000000
2024-03-26 12:17:58,659 epoch 6 - iter 27/95 - loss 0.08746512 - time (sec): 5.69 - samples/sec: 1737.38 - lr: 0.000026 - momentum: 0.000000
2024-03-26 12:18:00,368 epoch 6 - iter 36/95 - loss 0.07826196 - time (sec): 7.40 - samples/sec: 1743.94 - lr: 0.000026 - momentum: 0.000000
2024-03-26 12:18:02,358 epoch 6 - iter 45/95 - loss 0.07323678 - time (sec): 9.39 - samples/sec: 1740.04 - lr: 0.000025 - momentum: 0.000000
2024-03-26 12:18:04,568 epoch 6 - iter 54/95 - loss 0.06698128 - time (sec): 11.60 - samples/sec: 1706.05 - lr: 0.000025 - momentum: 0.000000
2024-03-26 12:18:06,266 epoch 6 - iter 63/95 - loss 0.06973624 - time (sec): 13.30 - samples/sec: 1727.33 - lr: 0.000024 - momentum: 0.000000
2024-03-26 12:18:07,867 epoch 6 - iter 72/95 - loss 0.07049901 - time (sec): 14.90 - samples/sec: 1748.07 - lr: 0.000024 - momentum: 0.000000
2024-03-26 12:18:09,132 epoch 6 - iter 81/95 - loss 0.06883005 - time (sec): 16.16 - samples/sec: 1778.42 - lr: 0.000023 - momentum: 0.000000
2024-03-26 12:18:11,040 epoch 6 - iter 90/95 - loss 0.06491973 - time (sec): 18.07 - samples/sec: 1778.06 - lr: 0.000023 - momentum: 0.000000
2024-03-26 12:18:12,595 ----------------------------------------------------------------------------------------------------
2024-03-26 12:18:12,595 EPOCH 6 done: loss 0.0621 - lr: 0.000023
2024-03-26 12:18:13,530 DEV : loss 0.21062487363815308 - f1-score (micro avg) 0.9138
2024-03-26 12:18:13,531 saving best model
2024-03-26 12:18:13,967 ----------------------------------------------------------------------------------------------------
2024-03-26 12:18:15,657 epoch 7 - iter 9/95 - loss 0.03135025 - time (sec): 1.69 - samples/sec: 1864.58 - lr: 0.000022 - momentum: 0.000000
2024-03-26 12:18:17,178 epoch 7 - iter 18/95 - loss 0.04612086 - time (sec): 3.21 - samples/sec: 1832.91 - lr: 0.000021 - momentum: 0.000000
2024-03-26 12:18:18,494 epoch 7 - iter 27/95 - loss 0.06246375 - time (sec): 4.53 - samples/sec: 1871.28 - lr: 0.000021 - momentum: 0.000000
2024-03-26 12:18:20,844 epoch 7 - iter 36/95 - loss 0.05586240 - time (sec): 6.87 - samples/sec: 1848.73 - lr: 0.000020 - momentum: 0.000000
2024-03-26 12:18:22,814 epoch 7 - iter 45/95 - loss 0.05942577 - time (sec): 8.85 - samples/sec: 1840.86 - lr: 0.000020 - momentum: 0.000000
2024-03-26 12:18:24,526 epoch 7 - iter 54/95 - loss 0.05670271 - time (sec): 10.56 - samples/sec: 1836.88 - lr: 0.000019 - momentum: 0.000000
2024-03-26 12:18:26,122 epoch 7 - iter 63/95 - loss 0.05494130 - time (sec): 12.15 - samples/sec: 1854.57 - lr: 0.000019 - momentum: 0.000000
2024-03-26 12:18:27,660 epoch 7 - iter 72/95 - loss 0.05485412 - time (sec): 13.69 - samples/sec: 1846.14 - lr: 0.000018 - momentum: 0.000000
2024-03-26 12:18:30,467 epoch 7 - iter 81/95 - loss 0.05275127 - time (sec): 16.50 - samples/sec: 1780.62 - lr: 0.000018 - momentum: 0.000000
2024-03-26 12:18:32,128 epoch 7 - iter 90/95 - loss 0.05187601 - time (sec): 18.16 - samples/sec: 1788.35 - lr: 0.000017 - momentum: 0.000000
2024-03-26 12:18:33,304 ----------------------------------------------------------------------------------------------------
2024-03-26 12:18:33,304 EPOCH 7 done: loss 0.0513 - lr: 0.000017
2024-03-26 12:18:34,241 DEV : loss 0.20660282671451569 - f1-score (micro avg) 0.9272
2024-03-26 12:18:34,242 saving best model
2024-03-26 12:18:34,679 ----------------------------------------------------------------------------------------------------
2024-03-26 12:18:36,879 epoch 8 - iter 9/95 - loss 0.03834922 - time (sec): 2.20 - samples/sec: 1537.49 - lr: 0.000016 - momentum: 0.000000
2024-03-26 12:18:38,447 epoch 8 - iter 18/95 - loss 0.02899613 - time (sec): 3.77 - samples/sec: 1620.37 - lr: 0.000016 - momentum: 0.000000
2024-03-26 12:18:40,508 epoch 8 - iter 27/95 - loss 0.03237573 - time (sec): 5.83 - samples/sec: 1683.99 - lr: 0.000015 - momentum: 0.000000
2024-03-26 12:18:42,512 epoch 8 - iter 36/95 - loss 0.02944665 - time (sec): 7.83 - samples/sec: 1719.11 - lr: 0.000015 - momentum: 0.000000
2024-03-26 12:18:43,936 epoch 8 - iter 45/95 - loss 0.02812948 - time (sec): 9.26 - samples/sec: 1778.26 - lr: 0.000014 - momentum: 0.000000
2024-03-26 12:18:45,426 epoch 8 - iter 54/95 - loss 0.02849860 - time (sec): 10.74 - samples/sec: 1849.54 - lr: 0.000014 - momentum: 0.000000
2024-03-26 12:18:47,076 epoch 8 - iter 63/95 - loss 0.03008751 - time (sec): 12.39 - samples/sec: 1834.71 - lr: 0.000013 - momentum: 0.000000
2024-03-26 12:18:49,219 epoch 8 - iter 72/95 - loss 0.02843088 - time (sec): 14.54 - samples/sec: 1800.89 - lr: 0.000013 - momentum: 0.000000
2024-03-26 12:18:50,819 epoch 8 - iter 81/95 - loss 0.03172865 - time (sec): 16.14 - samples/sec: 1824.66 - lr: 0.000012 - momentum: 0.000000
2024-03-26 12:18:52,888 epoch 8 - iter 90/95 - loss 0.03341049 - time (sec): 18.21 - samples/sec: 1805.85 - lr: 0.000012 - momentum: 0.000000
2024-03-26 12:18:53,534 ----------------------------------------------------------------------------------------------------
2024-03-26 12:18:53,534 EPOCH 8 done: loss 0.0346 - lr: 0.000012
2024-03-26 12:18:54,465 DEV : loss 0.20071536302566528 - f1-score (micro avg) 0.9346
2024-03-26 12:18:54,466 saving best model
2024-03-26 12:18:54,944 ----------------------------------------------------------------------------------------------------
2024-03-26 12:18:57,548 epoch 9 - iter 9/95 - loss 0.01191280 - time (sec): 2.60 - samples/sec: 1656.95 - lr: 0.000011 - momentum: 0.000000
2024-03-26 12:18:59,147 epoch 9 - iter 18/95 - loss 0.01847100 - time (sec): 4.20 - samples/sec: 1721.14 - lr: 0.000010 - momentum: 0.000000
2024-03-26 12:19:01,758 epoch 9 - iter 27/95 - loss 0.02360116 - time (sec): 6.81 - samples/sec: 1659.11 - lr: 0.000010 - momentum: 0.000000
2024-03-26 12:19:03,626 epoch 9 - iter 36/95 - loss 0.02717013 - time (sec): 8.68 - samples/sec: 1669.48 - lr: 0.000009 - momentum: 0.000000
2024-03-26 12:19:04,806 epoch 9 - iter 45/95 - loss 0.02510231 - time (sec): 9.86 - samples/sec: 1729.78 - lr: 0.000009 - momentum: 0.000000
2024-03-26 12:19:06,575 epoch 9 - iter 54/95 - loss 0.02242460 - time (sec): 11.63 - samples/sec: 1725.14 - lr: 0.000008 - momentum: 0.000000
2024-03-26 12:19:07,996 epoch 9 - iter 63/95 - loss 0.02704971 - time (sec): 13.05 - samples/sec: 1769.91 - lr: 0.000008 - momentum: 0.000000
2024-03-26 12:19:09,192 epoch 9 - iter 72/95 - loss 0.02678838 - time (sec): 14.25 - samples/sec: 1818.51 - lr: 0.000007 - momentum: 0.000000
2024-03-26 12:19:10,741 epoch 9 - iter 81/95 - loss 0.02504760 - time (sec): 15.80 - samples/sec: 1818.68 - lr: 0.000007 - momentum: 0.000000
2024-03-26 12:19:13,539 epoch 9 - iter 90/95 - loss 0.02802835 - time (sec): 18.59 - samples/sec: 1773.37 - lr: 0.000006 - momentum: 0.000000
2024-03-26 12:19:14,336 ----------------------------------------------------------------------------------------------------
2024-03-26 12:19:14,336 EPOCH 9 done: loss 0.0276 - lr: 0.000006
2024-03-26 12:19:15,294 DEV : loss 0.2257862389087677 - f1-score (micro avg) 0.9343
2024-03-26 12:19:15,295 ----------------------------------------------------------------------------------------------------
2024-03-26 12:19:17,811 epoch 10 - iter 9/95 - loss 0.02415602 - time (sec): 2.52 - samples/sec: 1604.40 - lr: 0.000005 - momentum: 0.000000
2024-03-26 12:19:19,392 epoch 10 - iter 18/95 - loss 0.02153363 - time (sec): 4.10 - samples/sec: 1702.07 - lr: 0.000005 - momentum: 0.000000
2024-03-26 12:19:21,402 epoch 10 - iter 27/95 - loss 0.01906523 - time (sec): 6.11 - samples/sec: 1650.45 - lr: 0.000004 - momentum: 0.000000
2024-03-26 12:19:23,503 epoch 10 - iter 36/95 - loss 0.01928902 - time (sec): 8.21 - samples/sec: 1662.79 - lr: 0.000004 - momentum: 0.000000
2024-03-26 12:19:25,399 epoch 10 - iter 45/95 - loss 0.01845826 - time (sec): 10.10 - samples/sec: 1678.97 - lr: 0.000003 - momentum: 0.000000
2024-03-26 12:19:26,550 epoch 10 - iter 54/95 - loss 0.01897577 - time (sec): 11.25 - samples/sec: 1740.80 - lr: 0.000003 - momentum: 0.000000
2024-03-26 12:19:28,216 epoch 10 - iter 63/95 - loss 0.02489403 - time (sec): 12.92 - samples/sec: 1761.30 - lr: 0.000002 - momentum: 0.000000
2024-03-26 12:19:30,071 epoch 10 - iter 72/95 - loss 0.02391188 - time (sec): 14.78 - samples/sec: 1750.83 - lr: 0.000002 - momentum: 0.000000
2024-03-26 12:19:31,803 epoch 10 - iter 81/95 - loss 0.02463096 - time (sec): 16.51 - samples/sec: 1758.98 - lr: 0.000001 - momentum: 0.000000
2024-03-26 12:19:34,650 epoch 10 - iter 90/95 - loss 0.02255689 - time (sec): 19.35 - samples/sec: 1722.51 - lr: 0.000001 - momentum: 0.000000
2024-03-26 12:19:35,202 ----------------------------------------------------------------------------------------------------
2024-03-26 12:19:35,202 EPOCH 10 done: loss 0.0221 - lr: 0.000001
2024-03-26 12:19:36,133 DEV : loss 0.22455048561096191 - f1-score (micro avg) 0.9336
2024-03-26 12:19:36,401 ----------------------------------------------------------------------------------------------------
2024-03-26 12:19:36,402 Loading model from best epoch ...
2024-03-26 12:19:37,342 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 12:19:38,103
Results:
- F-score (micro) 0.9105
- F-score (macro) 0.6913
- Accuracy 0.8368
By class:
precision recall f1-score support
Unternehmen 0.9151 0.8910 0.9029 266
Auslagerung 0.8692 0.9076 0.8880 249
Ort 0.9635 0.9851 0.9742 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.9043 0.9168 0.9105 649
macro avg 0.6869 0.6959 0.6913 649
weighted avg 0.9075 0.9168 0.9119 649
2024-03-26 12:19:38,103 ----------------------------------------------------------------------------------------------------
|