File size: 26,663 Bytes
ddfd409
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
2024-03-26 15:52:02,958 ----------------------------------------------------------------------------------------------------
2024-03-26 15:52:02,959 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(31103, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2024-03-26 15:52:02,959 ----------------------------------------------------------------------------------------------------
2024-03-26 15:52:02,959 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 15:52:02,959 ----------------------------------------------------------------------------------------------------
2024-03-26 15:52:02,959 Train:  758 sentences
2024-03-26 15:52:02,959         (train_with_dev=False, train_with_test=False)
2024-03-26 15:52:02,959 ----------------------------------------------------------------------------------------------------
2024-03-26 15:52:02,959 Training Params:
2024-03-26 15:52:02,959  - learning_rate: "5e-05" 
2024-03-26 15:52:02,959  - mini_batch_size: "16"
2024-03-26 15:52:02,959  - max_epochs: "10"
2024-03-26 15:52:02,959  - shuffle: "True"
2024-03-26 15:52:02,959 ----------------------------------------------------------------------------------------------------
2024-03-26 15:52:02,959 Plugins:
2024-03-26 15:52:02,959  - TensorboardLogger
2024-03-26 15:52:02,959  - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 15:52:02,959 ----------------------------------------------------------------------------------------------------
2024-03-26 15:52:02,959 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 15:52:02,959  - metric: "('micro avg', 'f1-score')"
2024-03-26 15:52:02,959 ----------------------------------------------------------------------------------------------------
2024-03-26 15:52:02,959 Computation:
2024-03-26 15:52:02,959  - compute on device: cuda:0
2024-03-26 15:52:02,959  - embedding storage: none
2024-03-26 15:52:02,959 ----------------------------------------------------------------------------------------------------
2024-03-26 15:52:02,959 Model training base path: "flair-co-funer-german_dbmdz_bert_base-bs16-e10-lr5e-05-3"
2024-03-26 15:52:02,959 ----------------------------------------------------------------------------------------------------
2024-03-26 15:52:02,959 ----------------------------------------------------------------------------------------------------
2024-03-26 15:52:02,959 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 15:52:04,198 epoch 1 - iter 4/48 - loss 3.36871580 - time (sec): 1.24 - samples/sec: 2223.21 - lr: 0.000003 - momentum: 0.000000
2024-03-26 15:52:06,153 epoch 1 - iter 8/48 - loss 3.35491608 - time (sec): 3.19 - samples/sec: 1823.73 - lr: 0.000007 - momentum: 0.000000
2024-03-26 15:52:07,676 epoch 1 - iter 12/48 - loss 3.27876324 - time (sec): 4.72 - samples/sec: 1775.38 - lr: 0.000011 - momentum: 0.000000
2024-03-26 15:52:10,553 epoch 1 - iter 16/48 - loss 3.11865705 - time (sec): 7.59 - samples/sec: 1527.33 - lr: 0.000016 - momentum: 0.000000
2024-03-26 15:52:12,193 epoch 1 - iter 20/48 - loss 2.92420891 - time (sec): 9.23 - samples/sec: 1559.91 - lr: 0.000020 - momentum: 0.000000
2024-03-26 15:52:13,621 epoch 1 - iter 24/48 - loss 2.79486934 - time (sec): 10.66 - samples/sec: 1610.32 - lr: 0.000024 - momentum: 0.000000
2024-03-26 15:52:14,931 epoch 1 - iter 28/48 - loss 2.64942505 - time (sec): 11.97 - samples/sec: 1631.10 - lr: 0.000028 - momentum: 0.000000
2024-03-26 15:52:17,003 epoch 1 - iter 32/48 - loss 2.49591100 - time (sec): 14.04 - samples/sec: 1618.44 - lr: 0.000032 - momentum: 0.000000
2024-03-26 15:52:18,551 epoch 1 - iter 36/48 - loss 2.36472815 - time (sec): 15.59 - samples/sec: 1636.77 - lr: 0.000036 - momentum: 0.000000
2024-03-26 15:52:20,770 epoch 1 - iter 40/48 - loss 2.21807707 - time (sec): 17.81 - samples/sec: 1626.92 - lr: 0.000041 - momentum: 0.000000
2024-03-26 15:52:22,666 epoch 1 - iter 44/48 - loss 2.09300028 - time (sec): 19.71 - samples/sec: 1627.18 - lr: 0.000045 - momentum: 0.000000
2024-03-26 15:52:24,279 epoch 1 - iter 48/48 - loss 1.99414814 - time (sec): 21.32 - samples/sec: 1616.93 - lr: 0.000049 - momentum: 0.000000
2024-03-26 15:52:24,279 ----------------------------------------------------------------------------------------------------
2024-03-26 15:52:24,279 EPOCH 1 done: loss 1.9941 - lr: 0.000049
2024-03-26 15:52:25,089 DEV : loss 0.534384548664093 - f1-score (micro avg)  0.6359
2024-03-26 15:52:25,090 saving best model
2024-03-26 15:52:25,350 ----------------------------------------------------------------------------------------------------
2024-03-26 15:52:26,756 epoch 2 - iter 4/48 - loss 0.67744424 - time (sec): 1.41 - samples/sec: 1775.23 - lr: 0.000050 - momentum: 0.000000
2024-03-26 15:52:28,206 epoch 2 - iter 8/48 - loss 0.55139495 - time (sec): 2.85 - samples/sec: 1709.87 - lr: 0.000049 - momentum: 0.000000
2024-03-26 15:52:29,612 epoch 2 - iter 12/48 - loss 0.54765888 - time (sec): 4.26 - samples/sec: 1803.91 - lr: 0.000049 - momentum: 0.000000
2024-03-26 15:52:31,456 epoch 2 - iter 16/48 - loss 0.50626208 - time (sec): 6.11 - samples/sec: 1761.98 - lr: 0.000048 - momentum: 0.000000
2024-03-26 15:52:33,777 epoch 2 - iter 20/48 - loss 0.49532790 - time (sec): 8.43 - samples/sec: 1682.91 - lr: 0.000048 - momentum: 0.000000
2024-03-26 15:52:35,771 epoch 2 - iter 24/48 - loss 0.46590322 - time (sec): 10.42 - samples/sec: 1664.63 - lr: 0.000047 - momentum: 0.000000
2024-03-26 15:52:38,456 epoch 2 - iter 28/48 - loss 0.45169069 - time (sec): 13.10 - samples/sec: 1596.77 - lr: 0.000047 - momentum: 0.000000
2024-03-26 15:52:40,618 epoch 2 - iter 32/48 - loss 0.43566903 - time (sec): 15.27 - samples/sec: 1563.38 - lr: 0.000046 - momentum: 0.000000
2024-03-26 15:52:42,312 epoch 2 - iter 36/48 - loss 0.43297444 - time (sec): 16.96 - samples/sec: 1557.48 - lr: 0.000046 - momentum: 0.000000
2024-03-26 15:52:43,999 epoch 2 - iter 40/48 - loss 0.43365283 - time (sec): 18.65 - samples/sec: 1564.35 - lr: 0.000046 - momentum: 0.000000
2024-03-26 15:52:46,130 epoch 2 - iter 44/48 - loss 0.42306738 - time (sec): 20.78 - samples/sec: 1559.38 - lr: 0.000045 - momentum: 0.000000
2024-03-26 15:52:47,625 epoch 2 - iter 48/48 - loss 0.41433491 - time (sec): 22.27 - samples/sec: 1547.60 - lr: 0.000045 - momentum: 0.000000
2024-03-26 15:52:47,626 ----------------------------------------------------------------------------------------------------
2024-03-26 15:52:47,626 EPOCH 2 done: loss 0.4143 - lr: 0.000045
2024-03-26 15:52:48,507 DEV : loss 0.27958521246910095 - f1-score (micro avg)  0.8259
2024-03-26 15:52:48,508 saving best model
2024-03-26 15:52:48,954 ----------------------------------------------------------------------------------------------------
2024-03-26 15:52:50,440 epoch 3 - iter 4/48 - loss 0.27629199 - time (sec): 1.48 - samples/sec: 1650.03 - lr: 0.000044 - momentum: 0.000000
2024-03-26 15:52:53,216 epoch 3 - iter 8/48 - loss 0.21900262 - time (sec): 4.26 - samples/sec: 1344.64 - lr: 0.000044 - momentum: 0.000000
2024-03-26 15:52:54,448 epoch 3 - iter 12/48 - loss 0.23721159 - time (sec): 5.49 - samples/sec: 1483.07 - lr: 0.000043 - momentum: 0.000000
2024-03-26 15:52:55,799 epoch 3 - iter 16/48 - loss 0.22015402 - time (sec): 6.84 - samples/sec: 1612.92 - lr: 0.000043 - momentum: 0.000000
2024-03-26 15:52:57,237 epoch 3 - iter 20/48 - loss 0.22188495 - time (sec): 8.28 - samples/sec: 1631.55 - lr: 0.000042 - momentum: 0.000000
2024-03-26 15:52:59,912 epoch 3 - iter 24/48 - loss 0.21454789 - time (sec): 10.96 - samples/sec: 1524.48 - lr: 0.000042 - momentum: 0.000000
2024-03-26 15:53:01,801 epoch 3 - iter 28/48 - loss 0.21846474 - time (sec): 12.85 - samples/sec: 1542.93 - lr: 0.000041 - momentum: 0.000000
2024-03-26 15:53:04,292 epoch 3 - iter 32/48 - loss 0.20921952 - time (sec): 15.34 - samples/sec: 1486.76 - lr: 0.000041 - momentum: 0.000000
2024-03-26 15:53:06,201 epoch 3 - iter 36/48 - loss 0.21499627 - time (sec): 17.25 - samples/sec: 1483.18 - lr: 0.000040 - momentum: 0.000000
2024-03-26 15:53:08,534 epoch 3 - iter 40/48 - loss 0.20811360 - time (sec): 19.58 - samples/sec: 1458.97 - lr: 0.000040 - momentum: 0.000000
2024-03-26 15:53:10,945 epoch 3 - iter 44/48 - loss 0.21735434 - time (sec): 21.99 - samples/sec: 1447.14 - lr: 0.000040 - momentum: 0.000000
2024-03-26 15:53:13,249 epoch 3 - iter 48/48 - loss 0.20978841 - time (sec): 24.29 - samples/sec: 1418.97 - lr: 0.000039 - momentum: 0.000000
2024-03-26 15:53:13,249 ----------------------------------------------------------------------------------------------------
2024-03-26 15:53:13,249 EPOCH 3 done: loss 0.2098 - lr: 0.000039
2024-03-26 15:53:14,147 DEV : loss 0.1994694024324417 - f1-score (micro avg)  0.8687
2024-03-26 15:53:14,149 saving best model
2024-03-26 15:53:14,593 ----------------------------------------------------------------------------------------------------
2024-03-26 15:53:15,971 epoch 4 - iter 4/48 - loss 0.15914292 - time (sec): 1.38 - samples/sec: 1820.14 - lr: 0.000039 - momentum: 0.000000
2024-03-26 15:53:17,861 epoch 4 - iter 8/48 - loss 0.14834117 - time (sec): 3.27 - samples/sec: 1640.83 - lr: 0.000038 - momentum: 0.000000
2024-03-26 15:53:20,373 epoch 4 - iter 12/48 - loss 0.13533886 - time (sec): 5.78 - samples/sec: 1460.32 - lr: 0.000038 - momentum: 0.000000
2024-03-26 15:53:22,252 epoch 4 - iter 16/48 - loss 0.14253572 - time (sec): 7.66 - samples/sec: 1478.91 - lr: 0.000037 - momentum: 0.000000
2024-03-26 15:53:24,628 epoch 4 - iter 20/48 - loss 0.13383594 - time (sec): 10.03 - samples/sec: 1464.44 - lr: 0.000037 - momentum: 0.000000
2024-03-26 15:53:27,500 epoch 4 - iter 24/48 - loss 0.12723340 - time (sec): 12.91 - samples/sec: 1412.93 - lr: 0.000036 - momentum: 0.000000
2024-03-26 15:53:28,611 epoch 4 - iter 28/48 - loss 0.12587698 - time (sec): 14.02 - samples/sec: 1449.28 - lr: 0.000036 - momentum: 0.000000
2024-03-26 15:53:31,598 epoch 4 - iter 32/48 - loss 0.12620216 - time (sec): 17.00 - samples/sec: 1389.04 - lr: 0.000035 - momentum: 0.000000
2024-03-26 15:53:33,309 epoch 4 - iter 36/48 - loss 0.12972818 - time (sec): 18.71 - samples/sec: 1421.66 - lr: 0.000035 - momentum: 0.000000
2024-03-26 15:53:36,115 epoch 4 - iter 40/48 - loss 0.13833744 - time (sec): 21.52 - samples/sec: 1388.68 - lr: 0.000034 - momentum: 0.000000
2024-03-26 15:53:37,019 epoch 4 - iter 44/48 - loss 0.14040303 - time (sec): 22.42 - samples/sec: 1434.97 - lr: 0.000034 - momentum: 0.000000
2024-03-26 15:53:38,491 epoch 4 - iter 48/48 - loss 0.14126333 - time (sec): 23.90 - samples/sec: 1442.56 - lr: 0.000034 - momentum: 0.000000
2024-03-26 15:53:38,491 ----------------------------------------------------------------------------------------------------
2024-03-26 15:53:38,491 EPOCH 4 done: loss 0.1413 - lr: 0.000034
2024-03-26 15:53:39,390 DEV : loss 0.18417491018772125 - f1-score (micro avg)  0.9023
2024-03-26 15:53:39,391 saving best model
2024-03-26 15:53:39,808 ----------------------------------------------------------------------------------------------------
2024-03-26 15:53:42,254 epoch 5 - iter 4/48 - loss 0.08062461 - time (sec): 2.44 - samples/sec: 1300.88 - lr: 0.000033 - momentum: 0.000000
2024-03-26 15:53:43,670 epoch 5 - iter 8/48 - loss 0.10869288 - time (sec): 3.86 - samples/sec: 1475.04 - lr: 0.000033 - momentum: 0.000000
2024-03-26 15:53:45,120 epoch 5 - iter 12/48 - loss 0.10565853 - time (sec): 5.31 - samples/sec: 1552.27 - lr: 0.000032 - momentum: 0.000000
2024-03-26 15:53:47,297 epoch 5 - iter 16/48 - loss 0.10167389 - time (sec): 7.49 - samples/sec: 1469.81 - lr: 0.000032 - momentum: 0.000000
2024-03-26 15:53:49,350 epoch 5 - iter 20/48 - loss 0.10838379 - time (sec): 9.54 - samples/sec: 1476.06 - lr: 0.000031 - momentum: 0.000000
2024-03-26 15:53:51,814 epoch 5 - iter 24/48 - loss 0.10181658 - time (sec): 12.00 - samples/sec: 1466.58 - lr: 0.000031 - momentum: 0.000000
2024-03-26 15:53:54,360 epoch 5 - iter 28/48 - loss 0.09694413 - time (sec): 14.55 - samples/sec: 1446.70 - lr: 0.000030 - momentum: 0.000000
2024-03-26 15:53:56,226 epoch 5 - iter 32/48 - loss 0.09530949 - time (sec): 16.42 - samples/sec: 1450.67 - lr: 0.000030 - momentum: 0.000000
2024-03-26 15:53:58,030 epoch 5 - iter 36/48 - loss 0.09236130 - time (sec): 18.22 - samples/sec: 1451.54 - lr: 0.000029 - momentum: 0.000000
2024-03-26 15:54:00,314 epoch 5 - iter 40/48 - loss 0.09219478 - time (sec): 20.50 - samples/sec: 1440.45 - lr: 0.000029 - momentum: 0.000000
2024-03-26 15:54:02,252 epoch 5 - iter 44/48 - loss 0.09581412 - time (sec): 22.44 - samples/sec: 1439.37 - lr: 0.000029 - momentum: 0.000000
2024-03-26 15:54:03,297 epoch 5 - iter 48/48 - loss 0.09520551 - time (sec): 23.49 - samples/sec: 1467.77 - lr: 0.000028 - momentum: 0.000000
2024-03-26 15:54:03,297 ----------------------------------------------------------------------------------------------------
2024-03-26 15:54:03,297 EPOCH 5 done: loss 0.0952 - lr: 0.000028
2024-03-26 15:54:04,196 DEV : loss 0.1844843178987503 - f1-score (micro avg)  0.9094
2024-03-26 15:54:04,198 saving best model
2024-03-26 15:54:04,638 ----------------------------------------------------------------------------------------------------
2024-03-26 15:54:07,219 epoch 6 - iter 4/48 - loss 0.06778703 - time (sec): 2.58 - samples/sec: 1232.60 - lr: 0.000028 - momentum: 0.000000
2024-03-26 15:54:09,206 epoch 6 - iter 8/48 - loss 0.06680921 - time (sec): 4.57 - samples/sec: 1285.84 - lr: 0.000027 - momentum: 0.000000
2024-03-26 15:54:10,772 epoch 6 - iter 12/48 - loss 0.06684490 - time (sec): 6.13 - samples/sec: 1438.61 - lr: 0.000027 - momentum: 0.000000
2024-03-26 15:54:12,722 epoch 6 - iter 16/48 - loss 0.06208855 - time (sec): 8.08 - samples/sec: 1438.89 - lr: 0.000026 - momentum: 0.000000
2024-03-26 15:54:13,791 epoch 6 - iter 20/48 - loss 0.06558676 - time (sec): 9.15 - samples/sec: 1526.83 - lr: 0.000026 - momentum: 0.000000
2024-03-26 15:54:15,711 epoch 6 - iter 24/48 - loss 0.06594786 - time (sec): 11.07 - samples/sec: 1509.68 - lr: 0.000025 - momentum: 0.000000
2024-03-26 15:54:16,852 epoch 6 - iter 28/48 - loss 0.06539093 - time (sec): 12.21 - samples/sec: 1557.62 - lr: 0.000025 - momentum: 0.000000
2024-03-26 15:54:18,609 epoch 6 - iter 32/48 - loss 0.06402909 - time (sec): 13.97 - samples/sec: 1577.02 - lr: 0.000024 - momentum: 0.000000
2024-03-26 15:54:20,995 epoch 6 - iter 36/48 - loss 0.07604529 - time (sec): 16.36 - samples/sec: 1552.56 - lr: 0.000024 - momentum: 0.000000
2024-03-26 15:54:23,030 epoch 6 - iter 40/48 - loss 0.07312409 - time (sec): 18.39 - samples/sec: 1545.07 - lr: 0.000023 - momentum: 0.000000
2024-03-26 15:54:24,891 epoch 6 - iter 44/48 - loss 0.07627946 - time (sec): 20.25 - samples/sec: 1553.26 - lr: 0.000023 - momentum: 0.000000
2024-03-26 15:54:26,419 epoch 6 - iter 48/48 - loss 0.07671114 - time (sec): 21.78 - samples/sec: 1582.82 - lr: 0.000023 - momentum: 0.000000
2024-03-26 15:54:26,419 ----------------------------------------------------------------------------------------------------
2024-03-26 15:54:26,419 EPOCH 6 done: loss 0.0767 - lr: 0.000023
2024-03-26 15:54:27,324 DEV : loss 0.17374055087566376 - f1-score (micro avg)  0.9099
2024-03-26 15:54:27,326 saving best model
2024-03-26 15:54:27,747 ----------------------------------------------------------------------------------------------------
2024-03-26 15:54:29,906 epoch 7 - iter 4/48 - loss 0.07425281 - time (sec): 2.16 - samples/sec: 1281.28 - lr: 0.000022 - momentum: 0.000000
2024-03-26 15:54:31,595 epoch 7 - iter 8/48 - loss 0.05887528 - time (sec): 3.85 - samples/sec: 1493.64 - lr: 0.000022 - momentum: 0.000000
2024-03-26 15:54:33,643 epoch 7 - iter 12/48 - loss 0.04957316 - time (sec): 5.89 - samples/sec: 1453.44 - lr: 0.000021 - momentum: 0.000000
2024-03-26 15:54:36,191 epoch 7 - iter 16/48 - loss 0.04756465 - time (sec): 8.44 - samples/sec: 1399.92 - lr: 0.000021 - momentum: 0.000000
2024-03-26 15:54:38,842 epoch 7 - iter 20/48 - loss 0.05175879 - time (sec): 11.09 - samples/sec: 1408.93 - lr: 0.000020 - momentum: 0.000000
2024-03-26 15:54:40,355 epoch 7 - iter 24/48 - loss 0.05180407 - time (sec): 12.61 - samples/sec: 1429.71 - lr: 0.000020 - momentum: 0.000000
2024-03-26 15:54:42,438 epoch 7 - iter 28/48 - loss 0.04908208 - time (sec): 14.69 - samples/sec: 1448.25 - lr: 0.000019 - momentum: 0.000000
2024-03-26 15:54:44,585 epoch 7 - iter 32/48 - loss 0.05229406 - time (sec): 16.84 - samples/sec: 1452.08 - lr: 0.000019 - momentum: 0.000000
2024-03-26 15:54:46,786 epoch 7 - iter 36/48 - loss 0.05610937 - time (sec): 19.04 - samples/sec: 1437.97 - lr: 0.000018 - momentum: 0.000000
2024-03-26 15:54:48,353 epoch 7 - iter 40/48 - loss 0.05349840 - time (sec): 20.60 - samples/sec: 1447.06 - lr: 0.000018 - momentum: 0.000000
2024-03-26 15:54:49,993 epoch 7 - iter 44/48 - loss 0.05687802 - time (sec): 22.24 - samples/sec: 1466.35 - lr: 0.000017 - momentum: 0.000000
2024-03-26 15:54:51,315 epoch 7 - iter 48/48 - loss 0.05675112 - time (sec): 23.57 - samples/sec: 1462.78 - lr: 0.000017 - momentum: 0.000000
2024-03-26 15:54:51,315 ----------------------------------------------------------------------------------------------------
2024-03-26 15:54:51,315 EPOCH 7 done: loss 0.0568 - lr: 0.000017
2024-03-26 15:54:52,224 DEV : loss 0.1754644811153412 - f1-score (micro avg)  0.9258
2024-03-26 15:54:52,225 saving best model
2024-03-26 15:54:52,663 ----------------------------------------------------------------------------------------------------
2024-03-26 15:54:55,003 epoch 8 - iter 4/48 - loss 0.02736370 - time (sec): 2.34 - samples/sec: 1256.96 - lr: 0.000017 - momentum: 0.000000
2024-03-26 15:54:57,540 epoch 8 - iter 8/48 - loss 0.02700390 - time (sec): 4.87 - samples/sec: 1356.81 - lr: 0.000016 - momentum: 0.000000
2024-03-26 15:54:59,525 epoch 8 - iter 12/48 - loss 0.02802816 - time (sec): 6.86 - samples/sec: 1341.50 - lr: 0.000016 - momentum: 0.000000
2024-03-26 15:55:01,510 epoch 8 - iter 16/48 - loss 0.02894184 - time (sec): 8.84 - samples/sec: 1355.67 - lr: 0.000015 - momentum: 0.000000
2024-03-26 15:55:03,025 epoch 8 - iter 20/48 - loss 0.03150964 - time (sec): 10.36 - samples/sec: 1380.11 - lr: 0.000015 - momentum: 0.000000
2024-03-26 15:55:05,354 epoch 8 - iter 24/48 - loss 0.02969630 - time (sec): 12.69 - samples/sec: 1366.69 - lr: 0.000014 - momentum: 0.000000
2024-03-26 15:55:07,489 epoch 8 - iter 28/48 - loss 0.02992001 - time (sec): 14.82 - samples/sec: 1359.70 - lr: 0.000014 - momentum: 0.000000
2024-03-26 15:55:09,783 epoch 8 - iter 32/48 - loss 0.03878451 - time (sec): 17.12 - samples/sec: 1371.42 - lr: 0.000013 - momentum: 0.000000
2024-03-26 15:55:12,948 epoch 8 - iter 36/48 - loss 0.04273473 - time (sec): 20.28 - samples/sec: 1323.14 - lr: 0.000013 - momentum: 0.000000
2024-03-26 15:55:14,918 epoch 8 - iter 40/48 - loss 0.04616562 - time (sec): 22.25 - samples/sec: 1329.97 - lr: 0.000012 - momentum: 0.000000
2024-03-26 15:55:15,712 epoch 8 - iter 44/48 - loss 0.04479597 - time (sec): 23.05 - samples/sec: 1378.50 - lr: 0.000012 - momentum: 0.000000
2024-03-26 15:55:17,517 epoch 8 - iter 48/48 - loss 0.04471448 - time (sec): 24.85 - samples/sec: 1387.13 - lr: 0.000011 - momentum: 0.000000
2024-03-26 15:55:17,517 ----------------------------------------------------------------------------------------------------
2024-03-26 15:55:17,517 EPOCH 8 done: loss 0.0447 - lr: 0.000011
2024-03-26 15:55:18,427 DEV : loss 0.1700660139322281 - f1-score (micro avg)  0.9317
2024-03-26 15:55:18,428 saving best model
2024-03-26 15:55:18,873 ----------------------------------------------------------------------------------------------------
2024-03-26 15:55:21,552 epoch 9 - iter 4/48 - loss 0.02576288 - time (sec): 2.68 - samples/sec: 1231.65 - lr: 0.000011 - momentum: 0.000000
2024-03-26 15:55:23,217 epoch 9 - iter 8/48 - loss 0.02794343 - time (sec): 4.34 - samples/sec: 1321.42 - lr: 0.000011 - momentum: 0.000000
2024-03-26 15:55:25,320 epoch 9 - iter 12/48 - loss 0.03166695 - time (sec): 6.45 - samples/sec: 1392.61 - lr: 0.000010 - momentum: 0.000000
2024-03-26 15:55:27,386 epoch 9 - iter 16/48 - loss 0.03166024 - time (sec): 8.51 - samples/sec: 1422.73 - lr: 0.000010 - momentum: 0.000000
2024-03-26 15:55:29,689 epoch 9 - iter 20/48 - loss 0.02724723 - time (sec): 10.82 - samples/sec: 1398.87 - lr: 0.000009 - momentum: 0.000000
2024-03-26 15:55:31,590 epoch 9 - iter 24/48 - loss 0.03010259 - time (sec): 12.72 - samples/sec: 1392.59 - lr: 0.000009 - momentum: 0.000000
2024-03-26 15:55:34,763 epoch 9 - iter 28/48 - loss 0.03210630 - time (sec): 15.89 - samples/sec: 1344.54 - lr: 0.000008 - momentum: 0.000000
2024-03-26 15:55:36,120 epoch 9 - iter 32/48 - loss 0.03325750 - time (sec): 17.25 - samples/sec: 1385.30 - lr: 0.000008 - momentum: 0.000000
2024-03-26 15:55:38,466 epoch 9 - iter 36/48 - loss 0.03263536 - time (sec): 19.59 - samples/sec: 1375.54 - lr: 0.000007 - momentum: 0.000000
2024-03-26 15:55:39,916 epoch 9 - iter 40/48 - loss 0.03437591 - time (sec): 21.04 - samples/sec: 1393.42 - lr: 0.000007 - momentum: 0.000000
2024-03-26 15:55:41,411 epoch 9 - iter 44/48 - loss 0.03798605 - time (sec): 22.54 - samples/sec: 1411.50 - lr: 0.000006 - momentum: 0.000000
2024-03-26 15:55:42,804 epoch 9 - iter 48/48 - loss 0.03764149 - time (sec): 23.93 - samples/sec: 1440.58 - lr: 0.000006 - momentum: 0.000000
2024-03-26 15:55:42,804 ----------------------------------------------------------------------------------------------------
2024-03-26 15:55:42,804 EPOCH 9 done: loss 0.0376 - lr: 0.000006
2024-03-26 15:55:43,716 DEV : loss 0.19358719885349274 - f1-score (micro avg)  0.9372
2024-03-26 15:55:43,717 saving best model
2024-03-26 15:55:44,161 ----------------------------------------------------------------------------------------------------
2024-03-26 15:55:46,521 epoch 10 - iter 4/48 - loss 0.01698527 - time (sec): 2.36 - samples/sec: 1395.97 - lr: 0.000006 - momentum: 0.000000
2024-03-26 15:55:48,421 epoch 10 - iter 8/48 - loss 0.01570125 - time (sec): 4.26 - samples/sec: 1372.71 - lr: 0.000005 - momentum: 0.000000
2024-03-26 15:55:49,592 epoch 10 - iter 12/48 - loss 0.03071953 - time (sec): 5.43 - samples/sec: 1536.69 - lr: 0.000005 - momentum: 0.000000
2024-03-26 15:55:51,101 epoch 10 - iter 16/48 - loss 0.03178666 - time (sec): 6.94 - samples/sec: 1617.13 - lr: 0.000004 - momentum: 0.000000
2024-03-26 15:55:52,789 epoch 10 - iter 20/48 - loss 0.03140645 - time (sec): 8.63 - samples/sec: 1654.91 - lr: 0.000004 - momentum: 0.000000
2024-03-26 15:55:54,792 epoch 10 - iter 24/48 - loss 0.02924738 - time (sec): 10.63 - samples/sec: 1603.43 - lr: 0.000003 - momentum: 0.000000
2024-03-26 15:55:56,896 epoch 10 - iter 28/48 - loss 0.02706663 - time (sec): 12.73 - samples/sec: 1566.63 - lr: 0.000003 - momentum: 0.000000
2024-03-26 15:55:58,995 epoch 10 - iter 32/48 - loss 0.02812544 - time (sec): 14.83 - samples/sec: 1573.00 - lr: 0.000002 - momentum: 0.000000
2024-03-26 15:56:00,384 epoch 10 - iter 36/48 - loss 0.02759213 - time (sec): 16.22 - samples/sec: 1572.08 - lr: 0.000002 - momentum: 0.000000
2024-03-26 15:56:03,004 epoch 10 - iter 40/48 - loss 0.02639293 - time (sec): 18.84 - samples/sec: 1531.69 - lr: 0.000001 - momentum: 0.000000
2024-03-26 15:56:05,520 epoch 10 - iter 44/48 - loss 0.02901644 - time (sec): 21.36 - samples/sec: 1505.63 - lr: 0.000001 - momentum: 0.000000
2024-03-26 15:56:07,109 epoch 10 - iter 48/48 - loss 0.02914343 - time (sec): 22.95 - samples/sec: 1502.34 - lr: 0.000000 - momentum: 0.000000
2024-03-26 15:56:07,109 ----------------------------------------------------------------------------------------------------
2024-03-26 15:56:07,109 EPOCH 10 done: loss 0.0291 - lr: 0.000000
2024-03-26 15:56:08,014 DEV : loss 0.18885844945907593 - f1-score (micro avg)  0.9335
2024-03-26 15:56:08,280 ----------------------------------------------------------------------------------------------------
2024-03-26 15:56:08,280 Loading model from best epoch ...
2024-03-26 15:56:09,218 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 15:56:09,964 
Results:
- F-score (micro) 0.9065
- F-score (macro) 0.6888
- Accuracy 0.8312

By class:
              precision    recall  f1-score   support

 Unternehmen     0.9004    0.8835    0.8918       266
 Auslagerung     0.8609    0.9197    0.8893       249
         Ort     0.9635    0.9851    0.9742       134
    Software     0.0000    0.0000    0.0000         0

   micro avg     0.8949    0.9183    0.9065       649
   macro avg     0.6812    0.6971    0.6888       649
weighted avg     0.8983    0.9183    0.9079       649

2024-03-26 15:56:09,964 ----------------------------------------------------------------------------------------------------