File size: 23,822 Bytes
5518485
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
2024-03-26 15:23:48,594 ----------------------------------------------------------------------------------------------------
2024-03-26 15:23:48,594 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(31103, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2024-03-26 15:23:48,594 ----------------------------------------------------------------------------------------------------
2024-03-26 15:23:48,594 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 15:23:48,594 ----------------------------------------------------------------------------------------------------
2024-03-26 15:23:48,594 Train:  758 sentences
2024-03-26 15:23:48,594         (train_with_dev=False, train_with_test=False)
2024-03-26 15:23:48,594 ----------------------------------------------------------------------------------------------------
2024-03-26 15:23:48,594 Training Params:
2024-03-26 15:23:48,594  - learning_rate: "3e-05" 
2024-03-26 15:23:48,594  - mini_batch_size: "8"
2024-03-26 15:23:48,594  - max_epochs: "10"
2024-03-26 15:23:48,594  - shuffle: "True"
2024-03-26 15:23:48,594 ----------------------------------------------------------------------------------------------------
2024-03-26 15:23:48,594 Plugins:
2024-03-26 15:23:48,594  - TensorboardLogger
2024-03-26 15:23:48,594  - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 15:23:48,594 ----------------------------------------------------------------------------------------------------
2024-03-26 15:23:48,595 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 15:23:48,595  - metric: "('micro avg', 'f1-score')"
2024-03-26 15:23:48,595 ----------------------------------------------------------------------------------------------------
2024-03-26 15:23:48,595 Computation:
2024-03-26 15:23:48,595  - compute on device: cuda:0
2024-03-26 15:23:48,595  - embedding storage: none
2024-03-26 15:23:48,595 ----------------------------------------------------------------------------------------------------
2024-03-26 15:23:48,595 Model training base path: "flair-co-funer-german_dbmdz_bert_base-bs8-e10-lr3e-05-1"
2024-03-26 15:23:48,595 ----------------------------------------------------------------------------------------------------
2024-03-26 15:23:48,595 ----------------------------------------------------------------------------------------------------
2024-03-26 15:23:48,595 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 15:23:50,174 epoch 1 - iter 9/95 - loss 3.14979084 - time (sec): 1.58 - samples/sec: 1949.86 - lr: 0.000003 - momentum: 0.000000
2024-03-26 15:23:51,703 epoch 1 - iter 18/95 - loss 3.04307356 - time (sec): 3.11 - samples/sec: 2011.38 - lr: 0.000005 - momentum: 0.000000
2024-03-26 15:23:54,095 epoch 1 - iter 27/95 - loss 2.85325540 - time (sec): 5.50 - samples/sec: 1861.76 - lr: 0.000008 - momentum: 0.000000
2024-03-26 15:23:56,319 epoch 1 - iter 36/95 - loss 2.65209783 - time (sec): 7.72 - samples/sec: 1809.88 - lr: 0.000011 - momentum: 0.000000
2024-03-26 15:23:58,209 epoch 1 - iter 45/95 - loss 2.47670116 - time (sec): 9.61 - samples/sec: 1816.34 - lr: 0.000014 - momentum: 0.000000
2024-03-26 15:23:59,433 epoch 1 - iter 54/95 - loss 2.34499787 - time (sec): 10.84 - samples/sec: 1858.15 - lr: 0.000017 - momentum: 0.000000
2024-03-26 15:24:01,141 epoch 1 - iter 63/95 - loss 2.21603300 - time (sec): 12.55 - samples/sec: 1854.34 - lr: 0.000020 - momentum: 0.000000
2024-03-26 15:24:02,426 epoch 1 - iter 72/95 - loss 2.11033026 - time (sec): 13.83 - samples/sec: 1883.35 - lr: 0.000022 - momentum: 0.000000
2024-03-26 15:24:04,396 epoch 1 - iter 81/95 - loss 1.97356414 - time (sec): 15.80 - samples/sec: 1874.46 - lr: 0.000025 - momentum: 0.000000
2024-03-26 15:24:05,710 epoch 1 - iter 90/95 - loss 1.87082078 - time (sec): 17.12 - samples/sec: 1895.41 - lr: 0.000028 - momentum: 0.000000
2024-03-26 15:24:06,924 ----------------------------------------------------------------------------------------------------
2024-03-26 15:24:06,925 EPOCH 1 done: loss 1.7919 - lr: 0.000028
2024-03-26 15:24:07,760 DEV : loss 0.5088863968849182 - f1-score (micro avg)  0.6482
2024-03-26 15:24:07,761 saving best model
2024-03-26 15:24:08,026 ----------------------------------------------------------------------------------------------------
2024-03-26 15:24:10,065 epoch 2 - iter 9/95 - loss 0.50823411 - time (sec): 2.04 - samples/sec: 1811.64 - lr: 0.000030 - momentum: 0.000000
2024-03-26 15:24:11,741 epoch 2 - iter 18/95 - loss 0.53694131 - time (sec): 3.71 - samples/sec: 1953.10 - lr: 0.000029 - momentum: 0.000000
2024-03-26 15:24:13,548 epoch 2 - iter 27/95 - loss 0.50533491 - time (sec): 5.52 - samples/sec: 1867.09 - lr: 0.000029 - momentum: 0.000000
2024-03-26 15:24:15,312 epoch 2 - iter 36/95 - loss 0.48259154 - time (sec): 7.29 - samples/sec: 1835.30 - lr: 0.000029 - momentum: 0.000000
2024-03-26 15:24:17,204 epoch 2 - iter 45/95 - loss 0.45474310 - time (sec): 9.18 - samples/sec: 1845.27 - lr: 0.000028 - momentum: 0.000000
2024-03-26 15:24:19,404 epoch 2 - iter 54/95 - loss 0.42654159 - time (sec): 11.38 - samples/sec: 1814.83 - lr: 0.000028 - momentum: 0.000000
2024-03-26 15:24:20,715 epoch 2 - iter 63/95 - loss 0.42677167 - time (sec): 12.69 - samples/sec: 1856.69 - lr: 0.000028 - momentum: 0.000000
2024-03-26 15:24:22,043 epoch 2 - iter 72/95 - loss 0.41373855 - time (sec): 14.02 - samples/sec: 1887.33 - lr: 0.000028 - momentum: 0.000000
2024-03-26 15:24:23,845 epoch 2 - iter 81/95 - loss 0.40294984 - time (sec): 15.82 - samples/sec: 1871.34 - lr: 0.000027 - momentum: 0.000000
2024-03-26 15:24:25,501 epoch 2 - iter 90/95 - loss 0.39552323 - time (sec): 17.47 - samples/sec: 1867.73 - lr: 0.000027 - momentum: 0.000000
2024-03-26 15:24:26,434 ----------------------------------------------------------------------------------------------------
2024-03-26 15:24:26,434 EPOCH 2 done: loss 0.3899 - lr: 0.000027
2024-03-26 15:24:27,345 DEV : loss 0.2915351390838623 - f1-score (micro avg)  0.8051
2024-03-26 15:24:27,347 saving best model
2024-03-26 15:24:27,809 ----------------------------------------------------------------------------------------------------
2024-03-26 15:24:29,750 epoch 3 - iter 9/95 - loss 0.33132299 - time (sec): 1.94 - samples/sec: 1730.47 - lr: 0.000026 - momentum: 0.000000
2024-03-26 15:24:31,672 epoch 3 - iter 18/95 - loss 0.27912755 - time (sec): 3.86 - samples/sec: 1742.68 - lr: 0.000026 - momentum: 0.000000
2024-03-26 15:24:33,024 epoch 3 - iter 27/95 - loss 0.26573965 - time (sec): 5.21 - samples/sec: 1835.11 - lr: 0.000026 - momentum: 0.000000
2024-03-26 15:24:35,491 epoch 3 - iter 36/95 - loss 0.25234694 - time (sec): 7.68 - samples/sec: 1760.44 - lr: 0.000025 - momentum: 0.000000
2024-03-26 15:24:37,721 epoch 3 - iter 45/95 - loss 0.24175513 - time (sec): 9.91 - samples/sec: 1791.44 - lr: 0.000025 - momentum: 0.000000
2024-03-26 15:24:38,903 epoch 3 - iter 54/95 - loss 0.23630673 - time (sec): 11.09 - samples/sec: 1847.22 - lr: 0.000025 - momentum: 0.000000
2024-03-26 15:24:40,821 epoch 3 - iter 63/95 - loss 0.22822548 - time (sec): 13.01 - samples/sec: 1830.87 - lr: 0.000025 - momentum: 0.000000
2024-03-26 15:24:42,439 epoch 3 - iter 72/95 - loss 0.21717616 - time (sec): 14.63 - samples/sec: 1836.05 - lr: 0.000024 - momentum: 0.000000
2024-03-26 15:24:44,180 epoch 3 - iter 81/95 - loss 0.21748434 - time (sec): 16.37 - samples/sec: 1827.41 - lr: 0.000024 - momentum: 0.000000
2024-03-26 15:24:46,347 epoch 3 - iter 90/95 - loss 0.20897001 - time (sec): 18.54 - samples/sec: 1797.14 - lr: 0.000024 - momentum: 0.000000
2024-03-26 15:24:46,823 ----------------------------------------------------------------------------------------------------
2024-03-26 15:24:46,823 EPOCH 3 done: loss 0.2085 - lr: 0.000024
2024-03-26 15:24:47,721 DEV : loss 0.2427646666765213 - f1-score (micro avg)  0.8686
2024-03-26 15:24:47,722 saving best model
2024-03-26 15:24:48,166 ----------------------------------------------------------------------------------------------------
2024-03-26 15:24:49,762 epoch 4 - iter 9/95 - loss 0.17196514 - time (sec): 1.60 - samples/sec: 2018.98 - lr: 0.000023 - momentum: 0.000000
2024-03-26 15:24:51,788 epoch 4 - iter 18/95 - loss 0.14921918 - time (sec): 3.62 - samples/sec: 1780.76 - lr: 0.000023 - momentum: 0.000000
2024-03-26 15:24:53,569 epoch 4 - iter 27/95 - loss 0.15312969 - time (sec): 5.40 - samples/sec: 1803.35 - lr: 0.000022 - momentum: 0.000000
2024-03-26 15:24:56,120 epoch 4 - iter 36/95 - loss 0.13017501 - time (sec): 7.95 - samples/sec: 1732.26 - lr: 0.000022 - momentum: 0.000000
2024-03-26 15:24:57,807 epoch 4 - iter 45/95 - loss 0.13818847 - time (sec): 9.64 - samples/sec: 1751.27 - lr: 0.000022 - momentum: 0.000000
2024-03-26 15:24:59,342 epoch 4 - iter 54/95 - loss 0.13889360 - time (sec): 11.18 - samples/sec: 1804.85 - lr: 0.000022 - momentum: 0.000000
2024-03-26 15:25:01,194 epoch 4 - iter 63/95 - loss 0.14186955 - time (sec): 13.03 - samples/sec: 1827.36 - lr: 0.000021 - momentum: 0.000000
2024-03-26 15:25:02,476 epoch 4 - iter 72/95 - loss 0.14233703 - time (sec): 14.31 - samples/sec: 1856.74 - lr: 0.000021 - momentum: 0.000000
2024-03-26 15:25:04,195 epoch 4 - iter 81/95 - loss 0.14163043 - time (sec): 16.03 - samples/sec: 1846.28 - lr: 0.000021 - momentum: 0.000000
2024-03-26 15:25:05,685 epoch 4 - iter 90/95 - loss 0.14066665 - time (sec): 17.52 - samples/sec: 1867.47 - lr: 0.000020 - momentum: 0.000000
2024-03-26 15:25:06,586 ----------------------------------------------------------------------------------------------------
2024-03-26 15:25:06,586 EPOCH 4 done: loss 0.1405 - lr: 0.000020
2024-03-26 15:25:07,483 DEV : loss 0.19904547929763794 - f1-score (micro avg)  0.8939
2024-03-26 15:25:07,484 saving best model
2024-03-26 15:25:07,946 ----------------------------------------------------------------------------------------------------
2024-03-26 15:25:09,696 epoch 5 - iter 9/95 - loss 0.10174251 - time (sec): 1.75 - samples/sec: 1809.09 - lr: 0.000020 - momentum: 0.000000
2024-03-26 15:25:11,832 epoch 5 - iter 18/95 - loss 0.10059690 - time (sec): 3.89 - samples/sec: 1725.18 - lr: 0.000019 - momentum: 0.000000
2024-03-26 15:25:13,395 epoch 5 - iter 27/95 - loss 0.09581650 - time (sec): 5.45 - samples/sec: 1780.52 - lr: 0.000019 - momentum: 0.000000
2024-03-26 15:25:15,068 epoch 5 - iter 36/95 - loss 0.09741828 - time (sec): 7.12 - samples/sec: 1771.45 - lr: 0.000019 - momentum: 0.000000
2024-03-26 15:25:16,736 epoch 5 - iter 45/95 - loss 0.11306233 - time (sec): 8.79 - samples/sec: 1825.26 - lr: 0.000019 - momentum: 0.000000
2024-03-26 15:25:18,335 epoch 5 - iter 54/95 - loss 0.11499609 - time (sec): 10.39 - samples/sec: 1872.32 - lr: 0.000018 - momentum: 0.000000
2024-03-26 15:25:20,176 epoch 5 - iter 63/95 - loss 0.11069119 - time (sec): 12.23 - samples/sec: 1852.58 - lr: 0.000018 - momentum: 0.000000
2024-03-26 15:25:22,399 epoch 5 - iter 72/95 - loss 0.10254022 - time (sec): 14.45 - samples/sec: 1877.67 - lr: 0.000018 - momentum: 0.000000
2024-03-26 15:25:23,644 epoch 5 - iter 81/95 - loss 0.10177281 - time (sec): 15.70 - samples/sec: 1897.07 - lr: 0.000017 - momentum: 0.000000
2024-03-26 15:25:25,787 epoch 5 - iter 90/95 - loss 0.09762038 - time (sec): 17.84 - samples/sec: 1856.20 - lr: 0.000017 - momentum: 0.000000
2024-03-26 15:25:26,417 ----------------------------------------------------------------------------------------------------
2024-03-26 15:25:26,417 EPOCH 5 done: loss 0.0982 - lr: 0.000017
2024-03-26 15:25:27,324 DEV : loss 0.18307699263095856 - f1-score (micro avg)  0.9073
2024-03-26 15:25:27,325 saving best model
2024-03-26 15:25:27,804 ----------------------------------------------------------------------------------------------------
2024-03-26 15:25:29,385 epoch 6 - iter 9/95 - loss 0.03895202 - time (sec): 1.58 - samples/sec: 1829.62 - lr: 0.000016 - momentum: 0.000000
2024-03-26 15:25:31,383 epoch 6 - iter 18/95 - loss 0.05992809 - time (sec): 3.58 - samples/sec: 1833.81 - lr: 0.000016 - momentum: 0.000000
2024-03-26 15:25:33,061 epoch 6 - iter 27/95 - loss 0.06934296 - time (sec): 5.26 - samples/sec: 1870.23 - lr: 0.000016 - momentum: 0.000000
2024-03-26 15:25:34,708 epoch 6 - iter 36/95 - loss 0.06556657 - time (sec): 6.90 - samples/sec: 1835.76 - lr: 0.000016 - momentum: 0.000000
2024-03-26 15:25:36,306 epoch 6 - iter 45/95 - loss 0.06874063 - time (sec): 8.50 - samples/sec: 1849.94 - lr: 0.000015 - momentum: 0.000000
2024-03-26 15:25:38,304 epoch 6 - iter 54/95 - loss 0.07341583 - time (sec): 10.50 - samples/sec: 1831.20 - lr: 0.000015 - momentum: 0.000000
2024-03-26 15:25:39,875 epoch 6 - iter 63/95 - loss 0.07526510 - time (sec): 12.07 - samples/sec: 1831.58 - lr: 0.000015 - momentum: 0.000000
2024-03-26 15:25:42,666 epoch 6 - iter 72/95 - loss 0.07039873 - time (sec): 14.86 - samples/sec: 1794.44 - lr: 0.000014 - momentum: 0.000000
2024-03-26 15:25:44,514 epoch 6 - iter 81/95 - loss 0.07000601 - time (sec): 16.71 - samples/sec: 1802.30 - lr: 0.000014 - momentum: 0.000000
2024-03-26 15:25:46,183 epoch 6 - iter 90/95 - loss 0.07083690 - time (sec): 18.38 - samples/sec: 1796.30 - lr: 0.000014 - momentum: 0.000000
2024-03-26 15:25:46,793 ----------------------------------------------------------------------------------------------------
2024-03-26 15:25:46,793 EPOCH 6 done: loss 0.0725 - lr: 0.000014
2024-03-26 15:25:47,703 DEV : loss 0.18871811032295227 - f1-score (micro avg)  0.9027
2024-03-26 15:25:47,704 ----------------------------------------------------------------------------------------------------
2024-03-26 15:25:49,029 epoch 7 - iter 9/95 - loss 0.08815916 - time (sec): 1.32 - samples/sec: 2233.22 - lr: 0.000013 - momentum: 0.000000
2024-03-26 15:25:50,646 epoch 7 - iter 18/95 - loss 0.07169953 - time (sec): 2.94 - samples/sec: 1996.51 - lr: 0.000013 - momentum: 0.000000
2024-03-26 15:25:52,445 epoch 7 - iter 27/95 - loss 0.07522697 - time (sec): 4.74 - samples/sec: 1928.44 - lr: 0.000013 - momentum: 0.000000
2024-03-26 15:25:54,312 epoch 7 - iter 36/95 - loss 0.06714080 - time (sec): 6.61 - samples/sec: 1893.53 - lr: 0.000012 - momentum: 0.000000
2024-03-26 15:25:56,599 epoch 7 - iter 45/95 - loss 0.06055062 - time (sec): 8.89 - samples/sec: 1842.49 - lr: 0.000012 - momentum: 0.000000
2024-03-26 15:25:57,578 epoch 7 - iter 54/95 - loss 0.06119999 - time (sec): 9.87 - samples/sec: 1918.84 - lr: 0.000012 - momentum: 0.000000
2024-03-26 15:25:59,426 epoch 7 - iter 63/95 - loss 0.05722868 - time (sec): 11.72 - samples/sec: 1919.19 - lr: 0.000011 - momentum: 0.000000
2024-03-26 15:26:01,331 epoch 7 - iter 72/95 - loss 0.05507776 - time (sec): 13.63 - samples/sec: 1879.65 - lr: 0.000011 - momentum: 0.000000
2024-03-26 15:26:03,267 epoch 7 - iter 81/95 - loss 0.05448703 - time (sec): 15.56 - samples/sec: 1876.13 - lr: 0.000011 - momentum: 0.000000
2024-03-26 15:26:05,199 epoch 7 - iter 90/95 - loss 0.05399226 - time (sec): 17.49 - samples/sec: 1879.34 - lr: 0.000010 - momentum: 0.000000
2024-03-26 15:26:06,024 ----------------------------------------------------------------------------------------------------
2024-03-26 15:26:06,025 EPOCH 7 done: loss 0.0539 - lr: 0.000010
2024-03-26 15:26:06,957 DEV : loss 0.18794356286525726 - f1-score (micro avg)  0.9148
2024-03-26 15:26:06,958 saving best model
2024-03-26 15:26:07,419 ----------------------------------------------------------------------------------------------------
2024-03-26 15:26:09,010 epoch 8 - iter 9/95 - loss 0.05739097 - time (sec): 1.59 - samples/sec: 1880.34 - lr: 0.000010 - momentum: 0.000000
2024-03-26 15:26:11,015 epoch 8 - iter 18/95 - loss 0.05214964 - time (sec): 3.60 - samples/sec: 1691.16 - lr: 0.000010 - momentum: 0.000000
2024-03-26 15:26:12,574 epoch 8 - iter 27/95 - loss 0.05666378 - time (sec): 5.15 - samples/sec: 1785.67 - lr: 0.000009 - momentum: 0.000000
2024-03-26 15:26:14,284 epoch 8 - iter 36/95 - loss 0.05500534 - time (sec): 6.87 - samples/sec: 1833.93 - lr: 0.000009 - momentum: 0.000000
2024-03-26 15:26:16,576 epoch 8 - iter 45/95 - loss 0.04735151 - time (sec): 9.16 - samples/sec: 1815.50 - lr: 0.000009 - momentum: 0.000000
2024-03-26 15:26:18,867 epoch 8 - iter 54/95 - loss 0.04751933 - time (sec): 11.45 - samples/sec: 1819.00 - lr: 0.000008 - momentum: 0.000000
2024-03-26 15:26:20,811 epoch 8 - iter 63/95 - loss 0.04909725 - time (sec): 13.39 - samples/sec: 1823.14 - lr: 0.000008 - momentum: 0.000000
2024-03-26 15:26:21,890 epoch 8 - iter 72/95 - loss 0.04820220 - time (sec): 14.47 - samples/sec: 1855.66 - lr: 0.000008 - momentum: 0.000000
2024-03-26 15:26:23,542 epoch 8 - iter 81/95 - loss 0.04660140 - time (sec): 16.12 - samples/sec: 1840.90 - lr: 0.000007 - momentum: 0.000000
2024-03-26 15:26:24,903 epoch 8 - iter 90/95 - loss 0.04558973 - time (sec): 17.48 - samples/sec: 1856.55 - lr: 0.000007 - momentum: 0.000000
2024-03-26 15:26:26,112 ----------------------------------------------------------------------------------------------------
2024-03-26 15:26:26,112 EPOCH 8 done: loss 0.0478 - lr: 0.000007
2024-03-26 15:26:27,022 DEV : loss 0.1870705783367157 - f1-score (micro avg)  0.924
2024-03-26 15:26:27,025 saving best model
2024-03-26 15:26:27,485 ----------------------------------------------------------------------------------------------------
2024-03-26 15:26:29,237 epoch 9 - iter 9/95 - loss 0.02106672 - time (sec): 1.75 - samples/sec: 1983.41 - lr: 0.000007 - momentum: 0.000000
2024-03-26 15:26:31,152 epoch 9 - iter 18/95 - loss 0.02225839 - time (sec): 3.67 - samples/sec: 1843.01 - lr: 0.000006 - momentum: 0.000000
2024-03-26 15:26:32,991 epoch 9 - iter 27/95 - loss 0.02596204 - time (sec): 5.51 - samples/sec: 1784.61 - lr: 0.000006 - momentum: 0.000000
2024-03-26 15:26:34,917 epoch 9 - iter 36/95 - loss 0.03410280 - time (sec): 7.43 - samples/sec: 1811.69 - lr: 0.000006 - momentum: 0.000000
2024-03-26 15:26:36,789 epoch 9 - iter 45/95 - loss 0.03413443 - time (sec): 9.30 - samples/sec: 1792.29 - lr: 0.000005 - momentum: 0.000000
2024-03-26 15:26:38,645 epoch 9 - iter 54/95 - loss 0.03408301 - time (sec): 11.16 - samples/sec: 1822.88 - lr: 0.000005 - momentum: 0.000000
2024-03-26 15:26:40,516 epoch 9 - iter 63/95 - loss 0.03420543 - time (sec): 13.03 - samples/sec: 1822.30 - lr: 0.000005 - momentum: 0.000000
2024-03-26 15:26:42,088 epoch 9 - iter 72/95 - loss 0.03587913 - time (sec): 14.60 - samples/sec: 1833.40 - lr: 0.000004 - momentum: 0.000000
2024-03-26 15:26:43,788 epoch 9 - iter 81/95 - loss 0.03734644 - time (sec): 16.30 - samples/sec: 1824.04 - lr: 0.000004 - momentum: 0.000000
2024-03-26 15:26:45,538 epoch 9 - iter 90/95 - loss 0.03562347 - time (sec): 18.05 - samples/sec: 1841.38 - lr: 0.000004 - momentum: 0.000000
2024-03-26 15:26:46,038 ----------------------------------------------------------------------------------------------------
2024-03-26 15:26:46,038 EPOCH 9 done: loss 0.0360 - lr: 0.000004
2024-03-26 15:26:46,937 DEV : loss 0.194667786359787 - f1-score (micro avg)  0.9249
2024-03-26 15:26:46,938 saving best model
2024-03-26 15:26:47,393 ----------------------------------------------------------------------------------------------------
2024-03-26 15:26:48,863 epoch 10 - iter 9/95 - loss 0.01764166 - time (sec): 1.47 - samples/sec: 1891.64 - lr: 0.000003 - momentum: 0.000000
2024-03-26 15:26:50,677 epoch 10 - iter 18/95 - loss 0.02086608 - time (sec): 3.28 - samples/sec: 1841.60 - lr: 0.000003 - momentum: 0.000000
2024-03-26 15:26:52,806 epoch 10 - iter 27/95 - loss 0.02960285 - time (sec): 5.41 - samples/sec: 1786.52 - lr: 0.000003 - momentum: 0.000000
2024-03-26 15:26:54,657 epoch 10 - iter 36/95 - loss 0.03318762 - time (sec): 7.26 - samples/sec: 1806.19 - lr: 0.000002 - momentum: 0.000000
2024-03-26 15:26:55,822 epoch 10 - iter 45/95 - loss 0.03215798 - time (sec): 8.43 - samples/sec: 1860.01 - lr: 0.000002 - momentum: 0.000000
2024-03-26 15:26:57,715 epoch 10 - iter 54/95 - loss 0.03308007 - time (sec): 10.32 - samples/sec: 1844.85 - lr: 0.000002 - momentum: 0.000000
2024-03-26 15:26:59,093 epoch 10 - iter 63/95 - loss 0.03432878 - time (sec): 11.70 - samples/sec: 1857.55 - lr: 0.000001 - momentum: 0.000000
2024-03-26 15:27:01,335 epoch 10 - iter 72/95 - loss 0.02991145 - time (sec): 13.94 - samples/sec: 1837.36 - lr: 0.000001 - momentum: 0.000000
2024-03-26 15:27:03,633 epoch 10 - iter 81/95 - loss 0.03419502 - time (sec): 16.24 - samples/sec: 1818.46 - lr: 0.000001 - momentum: 0.000000
2024-03-26 15:27:05,471 epoch 10 - iter 90/95 - loss 0.03200818 - time (sec): 18.08 - samples/sec: 1810.90 - lr: 0.000000 - momentum: 0.000000
2024-03-26 15:27:06,480 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:06,480 EPOCH 10 done: loss 0.0310 - lr: 0.000000
2024-03-26 15:27:07,403 DEV : loss 0.1904587596654892 - f1-score (micro avg)  0.9336
2024-03-26 15:27:07,404 saving best model
2024-03-26 15:27:08,189 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:08,189 Loading model from best epoch ...
2024-03-26 15:27:09,080 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 15:27:09,836 
Results:
- F-score (micro) 0.9121
- F-score (macro) 0.6924
- Accuracy 0.8408

By class:
              precision    recall  f1-score   support

 Unternehmen     0.9147    0.8872    0.9008       266
 Auslagerung     0.8707    0.9197    0.8945       249
         Ort     0.9635    0.9851    0.9742       134
    Software     0.0000    0.0000    0.0000         0

   micro avg     0.9045    0.9199    0.9121       649
   macro avg     0.6872    0.6980    0.6924       649
weighted avg     0.9079    0.9199    0.9135       649

2024-03-26 15:27:09,836 ----------------------------------------------------------------------------------------------------