Upload ./training.log with huggingface_hub
Browse files- training.log +244 -0
training.log
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-03-26 15:56:28,731 ----------------------------------------------------------------------------------------------------
|
2 |
+
2024-03-26 15:56:28,732 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(31103, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=17, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2024-03-26 15:56:28,732 ----------------------------------------------------------------------------------------------------
|
51 |
+
2024-03-26 15:56:28,732 Corpus: 758 train + 94 dev + 96 test sentences
|
52 |
+
2024-03-26 15:56:28,732 ----------------------------------------------------------------------------------------------------
|
53 |
+
2024-03-26 15:56:28,732 Train: 758 sentences
|
54 |
+
2024-03-26 15:56:28,732 (train_with_dev=False, train_with_test=False)
|
55 |
+
2024-03-26 15:56:28,732 ----------------------------------------------------------------------------------------------------
|
56 |
+
2024-03-26 15:56:28,732 Training Params:
|
57 |
+
2024-03-26 15:56:28,732 - learning_rate: "3e-05"
|
58 |
+
2024-03-26 15:56:28,732 - mini_batch_size: "8"
|
59 |
+
2024-03-26 15:56:28,732 - max_epochs: "10"
|
60 |
+
2024-03-26 15:56:28,732 - shuffle: "True"
|
61 |
+
2024-03-26 15:56:28,732 ----------------------------------------------------------------------------------------------------
|
62 |
+
2024-03-26 15:56:28,732 Plugins:
|
63 |
+
2024-03-26 15:56:28,732 - TensorboardLogger
|
64 |
+
2024-03-26 15:56:28,732 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2024-03-26 15:56:28,732 ----------------------------------------------------------------------------------------------------
|
66 |
+
2024-03-26 15:56:28,732 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2024-03-26 15:56:28,732 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2024-03-26 15:56:28,732 ----------------------------------------------------------------------------------------------------
|
69 |
+
2024-03-26 15:56:28,732 Computation:
|
70 |
+
2024-03-26 15:56:28,732 - compute on device: cuda:0
|
71 |
+
2024-03-26 15:56:28,732 - embedding storage: none
|
72 |
+
2024-03-26 15:56:28,732 ----------------------------------------------------------------------------------------------------
|
73 |
+
2024-03-26 15:56:28,732 Model training base path: "flair-co-funer-german_dbmdz_bert_base-bs8-e10-lr3e-05-3"
|
74 |
+
2024-03-26 15:56:28,732 ----------------------------------------------------------------------------------------------------
|
75 |
+
2024-03-26 15:56:28,732 ----------------------------------------------------------------------------------------------------
|
76 |
+
2024-03-26 15:56:28,732 Logging anything other than scalars to TensorBoard is currently not supported.
|
77 |
+
2024-03-26 15:56:30,097 epoch 1 - iter 9/95 - loss 3.40897965 - time (sec): 1.36 - samples/sec: 2337.45 - lr: 0.000003 - momentum: 0.000000
|
78 |
+
2024-03-26 15:56:31,929 epoch 1 - iter 18/95 - loss 3.31388316 - time (sec): 3.20 - samples/sec: 1975.60 - lr: 0.000005 - momentum: 0.000000
|
79 |
+
2024-03-26 15:56:33,863 epoch 1 - iter 27/95 - loss 3.13512952 - time (sec): 5.13 - samples/sec: 1925.69 - lr: 0.000008 - momentum: 0.000000
|
80 |
+
2024-03-26 15:56:35,243 epoch 1 - iter 36/95 - loss 2.90060599 - time (sec): 6.51 - samples/sec: 1943.33 - lr: 0.000011 - momentum: 0.000000
|
81 |
+
2024-03-26 15:56:37,153 epoch 1 - iter 45/95 - loss 2.72060347 - time (sec): 8.42 - samples/sec: 1926.55 - lr: 0.000014 - momentum: 0.000000
|
82 |
+
2024-03-26 15:56:38,514 epoch 1 - iter 54/95 - loss 2.57144999 - time (sec): 9.78 - samples/sec: 1951.41 - lr: 0.000017 - momentum: 0.000000
|
83 |
+
2024-03-26 15:56:39,775 epoch 1 - iter 63/95 - loss 2.43257036 - time (sec): 11.04 - samples/sec: 1977.54 - lr: 0.000020 - momentum: 0.000000
|
84 |
+
2024-03-26 15:56:41,727 epoch 1 - iter 72/95 - loss 2.26703987 - time (sec): 12.99 - samples/sec: 1963.85 - lr: 0.000022 - momentum: 0.000000
|
85 |
+
2024-03-26 15:56:43,715 epoch 1 - iter 81/95 - loss 2.11127819 - time (sec): 14.98 - samples/sec: 1948.56 - lr: 0.000025 - momentum: 0.000000
|
86 |
+
2024-03-26 15:56:45,258 epoch 1 - iter 90/95 - loss 1.98170918 - time (sec): 16.53 - samples/sec: 1965.61 - lr: 0.000028 - momentum: 0.000000
|
87 |
+
2024-03-26 15:56:46,305 ----------------------------------------------------------------------------------------------------
|
88 |
+
2024-03-26 15:56:46,305 EPOCH 1 done: loss 1.9038 - lr: 0.000028
|
89 |
+
2024-03-26 15:56:47,108 DEV : loss 0.5299527049064636 - f1-score (micro avg) 0.6036
|
90 |
+
2024-03-26 15:56:47,110 saving best model
|
91 |
+
2024-03-26 15:56:47,370 ----------------------------------------------------------------------------------------------------
|
92 |
+
2024-03-26 15:56:48,729 epoch 2 - iter 9/95 - loss 0.66224744 - time (sec): 1.36 - samples/sec: 2017.66 - lr: 0.000030 - momentum: 0.000000
|
93 |
+
2024-03-26 15:56:50,558 epoch 2 - iter 18/95 - loss 0.53988141 - time (sec): 3.19 - samples/sec: 1916.77 - lr: 0.000029 - momentum: 0.000000
|
94 |
+
2024-03-26 15:56:51,733 epoch 2 - iter 27/95 - loss 0.51256267 - time (sec): 4.36 - samples/sec: 1966.97 - lr: 0.000029 - momentum: 0.000000
|
95 |
+
2024-03-26 15:56:53,980 epoch 2 - iter 36/95 - loss 0.48754644 - time (sec): 6.61 - samples/sec: 1918.41 - lr: 0.000029 - momentum: 0.000000
|
96 |
+
2024-03-26 15:56:55,914 epoch 2 - iter 45/95 - loss 0.47258088 - time (sec): 8.54 - samples/sec: 1924.86 - lr: 0.000028 - momentum: 0.000000
|
97 |
+
2024-03-26 15:56:58,060 epoch 2 - iter 54/95 - loss 0.45416617 - time (sec): 10.69 - samples/sec: 1897.89 - lr: 0.000028 - momentum: 0.000000
|
98 |
+
2024-03-26 15:57:00,064 epoch 2 - iter 63/95 - loss 0.43873715 - time (sec): 12.69 - samples/sec: 1851.93 - lr: 0.000028 - momentum: 0.000000
|
99 |
+
2024-03-26 15:57:01,581 epoch 2 - iter 72/95 - loss 0.44036924 - time (sec): 14.21 - samples/sec: 1858.93 - lr: 0.000028 - momentum: 0.000000
|
100 |
+
2024-03-26 15:57:03,021 epoch 2 - iter 81/95 - loss 0.44477795 - time (sec): 15.65 - samples/sec: 1882.26 - lr: 0.000027 - momentum: 0.000000
|
101 |
+
2024-03-26 15:57:05,231 epoch 2 - iter 90/95 - loss 0.43018505 - time (sec): 17.86 - samples/sec: 1857.15 - lr: 0.000027 - momentum: 0.000000
|
102 |
+
2024-03-26 15:57:05,871 ----------------------------------------------------------------------------------------------------
|
103 |
+
2024-03-26 15:57:05,871 EPOCH 2 done: loss 0.4259 - lr: 0.000027
|
104 |
+
2024-03-26 15:57:06,762 DEV : loss 0.26071757078170776 - f1-score (micro avg) 0.8174
|
105 |
+
2024-03-26 15:57:06,763 saving best model
|
106 |
+
2024-03-26 15:57:07,209 ----------------------------------------------------------------------------------------------------
|
107 |
+
2024-03-26 15:57:08,832 epoch 3 - iter 9/95 - loss 0.22653679 - time (sec): 1.62 - samples/sec: 1843.04 - lr: 0.000026 - momentum: 0.000000
|
108 |
+
2024-03-26 15:57:10,615 epoch 3 - iter 18/95 - loss 0.22165536 - time (sec): 3.40 - samples/sec: 1860.04 - lr: 0.000026 - momentum: 0.000000
|
109 |
+
2024-03-26 15:57:11,803 epoch 3 - iter 27/95 - loss 0.24382814 - time (sec): 4.59 - samples/sec: 2034.94 - lr: 0.000026 - momentum: 0.000000
|
110 |
+
2024-03-26 15:57:13,353 epoch 3 - iter 36/95 - loss 0.23044148 - time (sec): 6.14 - samples/sec: 2022.92 - lr: 0.000025 - momentum: 0.000000
|
111 |
+
2024-03-26 15:57:14,754 epoch 3 - iter 45/95 - loss 0.23407852 - time (sec): 7.54 - samples/sec: 2032.17 - lr: 0.000025 - momentum: 0.000000
|
112 |
+
2024-03-26 15:57:16,740 epoch 3 - iter 54/95 - loss 0.22455760 - time (sec): 9.53 - samples/sec: 1983.54 - lr: 0.000025 - momentum: 0.000000
|
113 |
+
2024-03-26 15:57:18,733 epoch 3 - iter 63/95 - loss 0.22224367 - time (sec): 11.52 - samples/sec: 1932.29 - lr: 0.000025 - momentum: 0.000000
|
114 |
+
2024-03-26 15:57:20,573 epoch 3 - iter 72/95 - loss 0.22558822 - time (sec): 13.36 - samples/sec: 1914.35 - lr: 0.000024 - momentum: 0.000000
|
115 |
+
2024-03-26 15:57:22,569 epoch 3 - iter 81/95 - loss 0.21667138 - time (sec): 15.36 - samples/sec: 1887.88 - lr: 0.000024 - momentum: 0.000000
|
116 |
+
2024-03-26 15:57:24,529 epoch 3 - iter 90/95 - loss 0.22596741 - time (sec): 17.32 - samples/sec: 1888.10 - lr: 0.000024 - momentum: 0.000000
|
117 |
+
2024-03-26 15:57:25,615 ----------------------------------------------------------------------------------------------------
|
118 |
+
2024-03-26 15:57:25,615 EPOCH 3 done: loss 0.2201 - lr: 0.000024
|
119 |
+
2024-03-26 15:57:26,503 DEV : loss 0.1964208483695984 - f1-score (micro avg) 0.8634
|
120 |
+
2024-03-26 15:57:26,504 saving best model
|
121 |
+
2024-03-26 15:57:26,934 ----------------------------------------------------------------------------------------------------
|
122 |
+
2024-03-26 15:57:28,224 epoch 4 - iter 9/95 - loss 0.16679719 - time (sec): 1.29 - samples/sec: 2154.19 - lr: 0.000023 - momentum: 0.000000
|
123 |
+
2024-03-26 15:57:30,061 epoch 4 - iter 18/95 - loss 0.14830405 - time (sec): 3.12 - samples/sec: 1966.91 - lr: 0.000023 - momentum: 0.000000
|
124 |
+
2024-03-26 15:57:31,987 epoch 4 - iter 27/95 - loss 0.14763405 - time (sec): 5.05 - samples/sec: 1911.65 - lr: 0.000022 - momentum: 0.000000
|
125 |
+
2024-03-26 15:57:33,468 epoch 4 - iter 36/95 - loss 0.15489395 - time (sec): 6.53 - samples/sec: 1920.27 - lr: 0.000022 - momentum: 0.000000
|
126 |
+
2024-03-26 15:57:35,904 epoch 4 - iter 45/95 - loss 0.14705872 - time (sec): 8.97 - samples/sec: 1842.61 - lr: 0.000022 - momentum: 0.000000
|
127 |
+
2024-03-26 15:57:37,763 epoch 4 - iter 54/95 - loss 0.14253798 - time (sec): 10.83 - samples/sec: 1822.80 - lr: 0.000022 - momentum: 0.000000
|
128 |
+
2024-03-26 15:57:39,702 epoch 4 - iter 63/95 - loss 0.13908137 - time (sec): 12.77 - samples/sec: 1801.41 - lr: 0.000021 - momentum: 0.000000
|
129 |
+
2024-03-26 15:57:41,583 epoch 4 - iter 72/95 - loss 0.14419298 - time (sec): 14.65 - samples/sec: 1816.43 - lr: 0.000021 - momentum: 0.000000
|
130 |
+
2024-03-26 15:57:43,605 epoch 4 - iter 81/95 - loss 0.15288539 - time (sec): 16.67 - samples/sec: 1813.74 - lr: 0.000021 - momentum: 0.000000
|
131 |
+
2024-03-26 15:57:44,587 epoch 4 - iter 90/95 - loss 0.15087821 - time (sec): 17.65 - samples/sec: 1852.76 - lr: 0.000020 - momentum: 0.000000
|
132 |
+
2024-03-26 15:57:45,693 ----------------------------------------------------------------------------------------------------
|
133 |
+
2024-03-26 15:57:45,693 EPOCH 4 done: loss 0.1500 - lr: 0.000020
|
134 |
+
2024-03-26 15:57:46,582 DEV : loss 0.17337767779827118 - f1-score (micro avg) 0.9175
|
135 |
+
2024-03-26 15:57:46,583 saving best model
|
136 |
+
2024-03-26 15:57:47,000 ----------------------------------------------------------------------------------------------------
|
137 |
+
2024-03-26 15:57:48,882 epoch 5 - iter 9/95 - loss 0.10880030 - time (sec): 1.88 - samples/sec: 1826.69 - lr: 0.000020 - momentum: 0.000000
|
138 |
+
2024-03-26 15:57:50,305 epoch 5 - iter 18/95 - loss 0.10527757 - time (sec): 3.30 - samples/sec: 1894.02 - lr: 0.000019 - momentum: 0.000000
|
139 |
+
2024-03-26 15:57:51,662 epoch 5 - iter 27/95 - loss 0.11148545 - time (sec): 4.66 - samples/sec: 1937.47 - lr: 0.000019 - momentum: 0.000000
|
140 |
+
2024-03-26 15:57:53,538 epoch 5 - iter 36/95 - loss 0.11019626 - time (sec): 6.54 - samples/sec: 1877.44 - lr: 0.000019 - momentum: 0.000000
|
141 |
+
2024-03-26 15:57:55,752 epoch 5 - iter 45/95 - loss 0.11013483 - time (sec): 8.75 - samples/sec: 1860.38 - lr: 0.000019 - momentum: 0.000000
|
142 |
+
2024-03-26 15:57:58,184 epoch 5 - iter 54/95 - loss 0.10479061 - time (sec): 11.18 - samples/sec: 1816.22 - lr: 0.000018 - momentum: 0.000000
|
143 |
+
2024-03-26 15:57:59,845 epoch 5 - iter 63/95 - loss 0.10233405 - time (sec): 12.84 - samples/sec: 1808.75 - lr: 0.000018 - momentum: 0.000000
|
144 |
+
2024-03-26 15:58:01,611 epoch 5 - iter 72/95 - loss 0.10005286 - time (sec): 14.61 - samples/sec: 1810.08 - lr: 0.000018 - momentum: 0.000000
|
145 |
+
2024-03-26 15:58:03,809 epoch 5 - iter 81/95 - loss 0.10086012 - time (sec): 16.81 - samples/sec: 1795.16 - lr: 0.000017 - momentum: 0.000000
|
146 |
+
2024-03-26 15:58:05,197 epoch 5 - iter 90/95 - loss 0.10258345 - time (sec): 18.20 - samples/sec: 1811.34 - lr: 0.000017 - momentum: 0.000000
|
147 |
+
2024-03-26 15:58:05,963 ----------------------------------------------------------------------------------------------------
|
148 |
+
2024-03-26 15:58:05,963 EPOCH 5 done: loss 0.1007 - lr: 0.000017
|
149 |
+
2024-03-26 15:58:06,877 DEV : loss 0.18982082605361938 - f1-score (micro avg) 0.9014
|
150 |
+
2024-03-26 15:58:06,879 ----------------------------------------------------------------------------------------------------
|
151 |
+
2024-03-26 15:58:08,817 epoch 6 - iter 9/95 - loss 0.08028524 - time (sec): 1.94 - samples/sec: 1800.97 - lr: 0.000016 - momentum: 0.000000
|
152 |
+
2024-03-26 15:58:10,371 epoch 6 - iter 18/95 - loss 0.07532962 - time (sec): 3.49 - samples/sec: 1821.86 - lr: 0.000016 - momentum: 0.000000
|
153 |
+
2024-03-26 15:58:12,275 epoch 6 - iter 27/95 - loss 0.07164228 - time (sec): 5.39 - samples/sec: 1832.84 - lr: 0.000016 - momentum: 0.000000
|
154 |
+
2024-03-26 15:58:13,840 epoch 6 - iter 36/95 - loss 0.07300866 - time (sec): 6.96 - samples/sec: 1832.15 - lr: 0.000016 - momentum: 0.000000
|
155 |
+
2024-03-26 15:58:15,292 epoch 6 - iter 45/95 - loss 0.07241842 - time (sec): 8.41 - samples/sec: 1869.29 - lr: 0.000015 - momentum: 0.000000
|
156 |
+
2024-03-26 15:58:16,740 epoch 6 - iter 54/95 - loss 0.06820202 - time (sec): 9.86 - samples/sec: 1867.89 - lr: 0.000015 - momentum: 0.000000
|
157 |
+
2024-03-26 15:58:18,021 epoch 6 - iter 63/95 - loss 0.06931340 - time (sec): 11.14 - samples/sec: 1929.82 - lr: 0.000015 - momentum: 0.000000
|
158 |
+
2024-03-26 15:58:20,266 epoch 6 - iter 72/95 - loss 0.07841376 - time (sec): 13.39 - samples/sec: 1897.00 - lr: 0.000014 - momentum: 0.000000
|
159 |
+
2024-03-26 15:58:21,841 epoch 6 - iter 81/95 - loss 0.07719176 - time (sec): 14.96 - samples/sec: 1915.32 - lr: 0.000014 - momentum: 0.000000
|
160 |
+
2024-03-26 15:58:23,542 epoch 6 - iter 90/95 - loss 0.07990913 - time (sec): 16.66 - samples/sec: 1934.39 - lr: 0.000014 - momentum: 0.000000
|
161 |
+
2024-03-26 15:58:24,803 ----------------------------------------------------------------------------------------------------
|
162 |
+
2024-03-26 15:58:24,803 EPOCH 6 done: loss 0.0806 - lr: 0.000014
|
163 |
+
2024-03-26 15:58:25,702 DEV : loss 0.1600886434316635 - f1-score (micro avg) 0.924
|
164 |
+
2024-03-26 15:58:25,703 saving best model
|
165 |
+
2024-03-26 15:58:26,144 ----------------------------------------------------------------------------------------------------
|
166 |
+
2024-03-26 15:58:28,029 epoch 7 - iter 9/95 - loss 0.06613833 - time (sec): 1.88 - samples/sec: 1686.24 - lr: 0.000013 - momentum: 0.000000
|
167 |
+
2024-03-26 15:58:30,062 epoch 7 - iter 18/95 - loss 0.04739985 - time (sec): 3.92 - samples/sec: 1674.05 - lr: 0.000013 - momentum: 0.000000
|
168 |
+
2024-03-26 15:58:31,594 epoch 7 - iter 27/95 - loss 0.04411594 - time (sec): 5.45 - samples/sec: 1795.59 - lr: 0.000013 - momentum: 0.000000
|
169 |
+
2024-03-26 15:58:33,544 epoch 7 - iter 36/95 - loss 0.04328564 - time (sec): 7.40 - samples/sec: 1781.17 - lr: 0.000012 - momentum: 0.000000
|
170 |
+
2024-03-26 15:58:35,924 epoch 7 - iter 45/95 - loss 0.04655521 - time (sec): 9.78 - samples/sec: 1773.48 - lr: 0.000012 - momentum: 0.000000
|
171 |
+
2024-03-26 15:58:37,435 epoch 7 - iter 54/95 - loss 0.04811539 - time (sec): 11.29 - samples/sec: 1781.91 - lr: 0.000012 - momentum: 0.000000
|
172 |
+
2024-03-26 15:58:39,611 epoch 7 - iter 63/95 - loss 0.05314137 - time (sec): 13.47 - samples/sec: 1788.51 - lr: 0.000011 - momentum: 0.000000
|
173 |
+
2024-03-26 15:58:41,395 epoch 7 - iter 72/95 - loss 0.05860180 - time (sec): 15.25 - samples/sec: 1795.17 - lr: 0.000011 - momentum: 0.000000
|
174 |
+
2024-03-26 15:58:42,812 epoch 7 - iter 81/95 - loss 0.05550674 - time (sec): 16.67 - samples/sec: 1807.44 - lr: 0.000011 - momentum: 0.000000
|
175 |
+
2024-03-26 15:58:44,785 epoch 7 - iter 90/95 - loss 0.05925639 - time (sec): 18.64 - samples/sec: 1787.13 - lr: 0.000010 - momentum: 0.000000
|
176 |
+
2024-03-26 15:58:45,269 ----------------------------------------------------------------------------------------------------
|
177 |
+
2024-03-26 15:58:45,269 EPOCH 7 done: loss 0.0597 - lr: 0.000010
|
178 |
+
2024-03-26 15:58:46,162 DEV : loss 0.17188522219657898 - f1-score (micro avg) 0.9241
|
179 |
+
2024-03-26 15:58:46,163 saving best model
|
180 |
+
2024-03-26 15:58:46,602 ----------------------------------------------------------------------------------------------------
|
181 |
+
2024-03-26 15:58:48,476 epoch 8 - iter 9/95 - loss 0.03912649 - time (sec): 1.87 - samples/sec: 1712.62 - lr: 0.000010 - momentum: 0.000000
|
182 |
+
2024-03-26 15:58:50,957 epoch 8 - iter 18/95 - loss 0.03142629 - time (sec): 4.35 - samples/sec: 1701.28 - lr: 0.000010 - momentum: 0.000000
|
183 |
+
2024-03-26 15:58:52,712 epoch 8 - iter 27/95 - loss 0.02965443 - time (sec): 6.11 - samples/sec: 1741.95 - lr: 0.000009 - momentum: 0.000000
|
184 |
+
2024-03-26 15:58:54,254 epoch 8 - iter 36/95 - loss 0.03024610 - time (sec): 7.65 - samples/sec: 1732.94 - lr: 0.000009 - momentum: 0.000000
|
185 |
+
2024-03-26 15:58:55,761 epoch 8 - iter 45/95 - loss 0.02925025 - time (sec): 9.16 - samples/sec: 1763.56 - lr: 0.000009 - momentum: 0.000000
|
186 |
+
2024-03-26 15:58:57,421 epoch 8 - iter 54/95 - loss 0.03157322 - time (sec): 10.82 - samples/sec: 1783.17 - lr: 0.000008 - momentum: 0.000000
|
187 |
+
2024-03-26 15:58:59,609 epoch 8 - iter 63/95 - loss 0.03982388 - time (sec): 13.01 - samples/sec: 1779.39 - lr: 0.000008 - momentum: 0.000000
|
188 |
+
2024-03-26 15:59:01,852 epoch 8 - iter 72/95 - loss 0.04270864 - time (sec): 15.25 - samples/sec: 1760.01 - lr: 0.000008 - momentum: 0.000000
|
189 |
+
2024-03-26 15:59:03,581 epoch 8 - iter 81/95 - loss 0.04809513 - time (sec): 16.98 - samples/sec: 1754.53 - lr: 0.000007 - momentum: 0.000000
|
190 |
+
2024-03-26 15:59:04,872 epoch 8 - iter 90/95 - loss 0.04825491 - time (sec): 18.27 - samples/sec: 1797.23 - lr: 0.000007 - momentum: 0.000000
|
191 |
+
2024-03-26 15:59:05,769 ----------------------------------------------------------------------------------------------------
|
192 |
+
2024-03-26 15:59:05,769 EPOCH 8 done: loss 0.0470 - lr: 0.000007
|
193 |
+
2024-03-26 15:59:06,667 DEV : loss 0.18762652575969696 - f1-score (micro avg) 0.9151
|
194 |
+
2024-03-26 15:59:06,668 ----------------------------------------------------------------------------------------------------
|
195 |
+
2024-03-26 15:59:08,646 epoch 9 - iter 9/95 - loss 0.02786068 - time (sec): 1.98 - samples/sec: 1782.79 - lr: 0.000007 - momentum: 0.000000
|
196 |
+
2024-03-26 15:59:10,364 epoch 9 - iter 18/95 - loss 0.03817157 - time (sec): 3.70 - samples/sec: 1810.99 - lr: 0.000006 - momentum: 0.000000
|
197 |
+
2024-03-26 15:59:12,234 epoch 9 - iter 27/95 - loss 0.03881680 - time (sec): 5.57 - samples/sec: 1835.48 - lr: 0.000006 - momentum: 0.000000
|
198 |
+
2024-03-26 15:59:14,086 epoch 9 - iter 36/95 - loss 0.03703367 - time (sec): 7.42 - samples/sec: 1830.87 - lr: 0.000006 - momentum: 0.000000
|
199 |
+
2024-03-26 15:59:16,342 epoch 9 - iter 45/95 - loss 0.03362287 - time (sec): 9.67 - samples/sec: 1752.19 - lr: 0.000005 - momentum: 0.000000
|
200 |
+
2024-03-26 15:59:18,263 epoch 9 - iter 54/95 - loss 0.03626384 - time (sec): 11.59 - samples/sec: 1741.11 - lr: 0.000005 - momentum: 0.000000
|
201 |
+
2024-03-26 15:59:20,138 epoch 9 - iter 63/95 - loss 0.03563241 - time (sec): 13.47 - samples/sec: 1752.97 - lr: 0.000005 - momentum: 0.000000
|
202 |
+
2024-03-26 15:59:22,027 epoch 9 - iter 72/95 - loss 0.03537384 - time (sec): 15.36 - samples/sec: 1754.66 - lr: 0.000004 - momentum: 0.000000
|
203 |
+
2024-03-26 15:59:23,268 epoch 9 - iter 81/95 - loss 0.03717623 - time (sec): 16.60 - samples/sec: 1778.52 - lr: 0.000004 - momentum: 0.000000
|
204 |
+
2024-03-26 15:59:24,671 epoch 9 - iter 90/95 - loss 0.04047492 - time (sec): 18.00 - samples/sec: 1800.27 - lr: 0.000004 - momentum: 0.000000
|
205 |
+
2024-03-26 15:59:25,618 ----------------------------------------------------------------------------------------------------
|
206 |
+
2024-03-26 15:59:25,618 EPOCH 9 done: loss 0.0402 - lr: 0.000004
|
207 |
+
2024-03-26 15:59:26,519 DEV : loss 0.1871178150177002 - f1-score (micro avg) 0.9299
|
208 |
+
2024-03-26 15:59:26,520 saving best model
|
209 |
+
2024-03-26 15:59:27,006 ----------------------------------------------------------------------------------------------------
|
210 |
+
2024-03-26 15:59:29,148 epoch 10 - iter 9/95 - loss 0.01758337 - time (sec): 2.14 - samples/sec: 1781.63 - lr: 0.000003 - momentum: 0.000000
|
211 |
+
2024-03-26 15:59:30,409 epoch 10 - iter 18/95 - loss 0.01823423 - time (sec): 3.40 - samples/sec: 1903.69 - lr: 0.000003 - momentum: 0.000000
|
212 |
+
2024-03-26 15:59:31,722 epoch 10 - iter 27/95 - loss 0.04357034 - time (sec): 4.71 - samples/sec: 2011.87 - lr: 0.000003 - momentum: 0.000000
|
213 |
+
2024-03-26 15:59:33,077 epoch 10 - iter 36/95 - loss 0.03985547 - time (sec): 6.07 - samples/sec: 2032.60 - lr: 0.000002 - momentum: 0.000000
|
214 |
+
2024-03-26 15:59:34,946 epoch 10 - iter 45/95 - loss 0.03388188 - time (sec): 7.94 - samples/sec: 2006.10 - lr: 0.000002 - momentum: 0.000000
|
215 |
+
2024-03-26 15:59:36,525 epoch 10 - iter 54/95 - loss 0.03360974 - time (sec): 9.52 - samples/sec: 1991.96 - lr: 0.000002 - momentum: 0.000000
|
216 |
+
2024-03-26 15:59:39,048 epoch 10 - iter 63/95 - loss 0.03430991 - time (sec): 12.04 - samples/sec: 1909.64 - lr: 0.000001 - momentum: 0.000000
|
217 |
+
2024-03-26 15:59:40,337 epoch 10 - iter 72/95 - loss 0.03306366 - time (sec): 13.33 - samples/sec: 1913.17 - lr: 0.000001 - momentum: 0.000000
|
218 |
+
2024-03-26 15:59:42,678 epoch 10 - iter 81/95 - loss 0.03085863 - time (sec): 15.67 - samples/sec: 1858.94 - lr: 0.000001 - momentum: 0.000000
|
219 |
+
2024-03-26 15:59:44,897 epoch 10 - iter 90/95 - loss 0.03301571 - time (sec): 17.89 - samples/sec: 1838.40 - lr: 0.000000 - momentum: 0.000000
|
220 |
+
2024-03-26 15:59:45,957 ----------------------------------------------------------------------------------------------------
|
221 |
+
2024-03-26 15:59:45,957 EPOCH 10 done: loss 0.0338 - lr: 0.000000
|
222 |
+
2024-03-26 15:59:46,860 DEV : loss 0.18731436133384705 - f1-score (micro avg) 0.9295
|
223 |
+
2024-03-26 15:59:47,124 ----------------------------------------------------------------------------------------------------
|
224 |
+
2024-03-26 15:59:47,125 Loading model from best epoch ...
|
225 |
+
2024-03-26 15:59:47,973 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
|
226 |
+
2024-03-26 15:59:48,738
|
227 |
+
Results:
|
228 |
+
- F-score (micro) 0.9152
|
229 |
+
- F-score (macro) 0.6943
|
230 |
+
- Accuracy 0.846
|
231 |
+
|
232 |
+
By class:
|
233 |
+
precision recall f1-score support
|
234 |
+
|
235 |
+
Unternehmen 0.9151 0.8910 0.9029 266
|
236 |
+
Auslagerung 0.8779 0.9237 0.9002 249
|
237 |
+
Ort 0.9635 0.9851 0.9742 134
|
238 |
+
Software 0.0000 0.0000 0.0000 0
|
239 |
+
|
240 |
+
micro avg 0.9076 0.9230 0.9152 649
|
241 |
+
macro avg 0.6891 0.6999 0.6943 649
|
242 |
+
weighted avg 0.9108 0.9230 0.9166 649
|
243 |
+
|
244 |
+
2024-03-26 15:59:48,738 ----------------------------------------------------------------------------------------------------
|