File size: 24,020 Bytes
ec16760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
2023-10-13 08:30:02,855 ----------------------------------------------------------------------------------------------------
2023-10-13 08:30:02,856 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-13 08:30:02,856 ----------------------------------------------------------------------------------------------------
2023-10-13 08:30:02,856 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-13 08:30:02,856 ----------------------------------------------------------------------------------------------------
2023-10-13 08:30:02,856 Train:  1100 sentences
2023-10-13 08:30:02,856         (train_with_dev=False, train_with_test=False)
2023-10-13 08:30:02,856 ----------------------------------------------------------------------------------------------------
2023-10-13 08:30:02,856 Training Params:
2023-10-13 08:30:02,856  - learning_rate: "3e-05" 
2023-10-13 08:30:02,856  - mini_batch_size: "4"
2023-10-13 08:30:02,856  - max_epochs: "10"
2023-10-13 08:30:02,856  - shuffle: "True"
2023-10-13 08:30:02,856 ----------------------------------------------------------------------------------------------------
2023-10-13 08:30:02,856 Plugins:
2023-10-13 08:30:02,856  - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 08:30:02,856 ----------------------------------------------------------------------------------------------------
2023-10-13 08:30:02,856 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 08:30:02,856  - metric: "('micro avg', 'f1-score')"
2023-10-13 08:30:02,856 ----------------------------------------------------------------------------------------------------
2023-10-13 08:30:02,856 Computation:
2023-10-13 08:30:02,856  - compute on device: cuda:0
2023-10-13 08:30:02,856  - embedding storage: none
2023-10-13 08:30:02,856 ----------------------------------------------------------------------------------------------------
2023-10-13 08:30:02,856 Model training base path: "hmbench-ajmc/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-13 08:30:02,856 ----------------------------------------------------------------------------------------------------
2023-10-13 08:30:02,856 ----------------------------------------------------------------------------------------------------
2023-10-13 08:30:04,144 epoch 1 - iter 27/275 - loss 3.12256091 - time (sec): 1.29 - samples/sec: 1881.91 - lr: 0.000003 - momentum: 0.000000
2023-10-13 08:30:05,494 epoch 1 - iter 54/275 - loss 2.73588781 - time (sec): 2.64 - samples/sec: 1721.27 - lr: 0.000006 - momentum: 0.000000
2023-10-13 08:30:06,747 epoch 1 - iter 81/275 - loss 2.11741342 - time (sec): 3.89 - samples/sec: 1759.29 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:30:07,941 epoch 1 - iter 108/275 - loss 1.76793211 - time (sec): 5.08 - samples/sec: 1777.11 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:30:09,143 epoch 1 - iter 135/275 - loss 1.56633956 - time (sec): 6.29 - samples/sec: 1795.64 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:30:10,376 epoch 1 - iter 162/275 - loss 1.42899417 - time (sec): 7.52 - samples/sec: 1764.94 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:30:11,623 epoch 1 - iter 189/275 - loss 1.28375594 - time (sec): 8.77 - samples/sec: 1790.74 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:30:12,860 epoch 1 - iter 216/275 - loss 1.16818959 - time (sec): 10.00 - samples/sec: 1784.82 - lr: 0.000023 - momentum: 0.000000
2023-10-13 08:30:14,096 epoch 1 - iter 243/275 - loss 1.08409111 - time (sec): 11.24 - samples/sec: 1787.90 - lr: 0.000026 - momentum: 0.000000
2023-10-13 08:30:15,283 epoch 1 - iter 270/275 - loss 1.00861787 - time (sec): 12.43 - samples/sec: 1792.64 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:30:15,505 ----------------------------------------------------------------------------------------------------
2023-10-13 08:30:15,505 EPOCH 1 done: loss 0.9973 - lr: 0.000029
2023-10-13 08:30:16,318 DEV : loss 0.23283608257770538 - f1-score (micro avg)  0.6629
2023-10-13 08:30:16,323 saving best model
2023-10-13 08:30:16,660 ----------------------------------------------------------------------------------------------------
2023-10-13 08:30:17,809 epoch 2 - iter 27/275 - loss 0.20631712 - time (sec): 1.15 - samples/sec: 1806.74 - lr: 0.000030 - momentum: 0.000000
2023-10-13 08:30:18,998 epoch 2 - iter 54/275 - loss 0.22953289 - time (sec): 2.34 - samples/sec: 1904.20 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:30:20,152 epoch 2 - iter 81/275 - loss 0.22170780 - time (sec): 3.49 - samples/sec: 1937.42 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:30:21,374 epoch 2 - iter 108/275 - loss 0.21397525 - time (sec): 4.71 - samples/sec: 1972.24 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:30:22,571 epoch 2 - iter 135/275 - loss 0.21197127 - time (sec): 5.91 - samples/sec: 1977.94 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:30:23,747 epoch 2 - iter 162/275 - loss 0.20464864 - time (sec): 7.09 - samples/sec: 1956.91 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:30:24,930 epoch 2 - iter 189/275 - loss 0.20054963 - time (sec): 8.27 - samples/sec: 1933.60 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:30:26,120 epoch 2 - iter 216/275 - loss 0.19706410 - time (sec): 9.46 - samples/sec: 1930.90 - lr: 0.000027 - momentum: 0.000000
2023-10-13 08:30:27,256 epoch 2 - iter 243/275 - loss 0.18940321 - time (sec): 10.59 - samples/sec: 1928.02 - lr: 0.000027 - momentum: 0.000000
2023-10-13 08:30:28,416 epoch 2 - iter 270/275 - loss 0.18411801 - time (sec): 11.75 - samples/sec: 1902.18 - lr: 0.000027 - momentum: 0.000000
2023-10-13 08:30:28,646 ----------------------------------------------------------------------------------------------------
2023-10-13 08:30:28,647 EPOCH 2 done: loss 0.1857 - lr: 0.000027
2023-10-13 08:30:29,336 DEV : loss 0.13876736164093018 - f1-score (micro avg)  0.8377
2023-10-13 08:30:29,342 saving best model
2023-10-13 08:30:29,797 ----------------------------------------------------------------------------------------------------
2023-10-13 08:30:31,028 epoch 3 - iter 27/275 - loss 0.08676695 - time (sec): 1.23 - samples/sec: 1865.67 - lr: 0.000026 - momentum: 0.000000
2023-10-13 08:30:32,243 epoch 3 - iter 54/275 - loss 0.11105096 - time (sec): 2.44 - samples/sec: 1900.57 - lr: 0.000026 - momentum: 0.000000
2023-10-13 08:30:33,443 epoch 3 - iter 81/275 - loss 0.11026128 - time (sec): 3.64 - samples/sec: 1894.97 - lr: 0.000026 - momentum: 0.000000
2023-10-13 08:30:34,635 epoch 3 - iter 108/275 - loss 0.09728597 - time (sec): 4.84 - samples/sec: 1877.65 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:30:35,834 epoch 3 - iter 135/275 - loss 0.11057918 - time (sec): 6.03 - samples/sec: 1905.70 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:30:37,014 epoch 3 - iter 162/275 - loss 0.11211846 - time (sec): 7.21 - samples/sec: 1878.86 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:30:38,268 epoch 3 - iter 189/275 - loss 0.10686033 - time (sec): 8.47 - samples/sec: 1866.84 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:30:39,465 epoch 3 - iter 216/275 - loss 0.10678281 - time (sec): 9.66 - samples/sec: 1858.69 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:30:40,664 epoch 3 - iter 243/275 - loss 0.10493191 - time (sec): 10.86 - samples/sec: 1867.30 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:30:41,872 epoch 3 - iter 270/275 - loss 0.10312391 - time (sec): 12.07 - samples/sec: 1855.13 - lr: 0.000023 - momentum: 0.000000
2023-10-13 08:30:42,095 ----------------------------------------------------------------------------------------------------
2023-10-13 08:30:42,096 EPOCH 3 done: loss 0.1019 - lr: 0.000023
2023-10-13 08:30:42,829 DEV : loss 0.1486443281173706 - f1-score (micro avg)  0.8523
2023-10-13 08:30:42,836 saving best model
2023-10-13 08:30:43,371 ----------------------------------------------------------------------------------------------------
2023-10-13 08:30:44,793 epoch 4 - iter 27/275 - loss 0.07441677 - time (sec): 1.42 - samples/sec: 1577.23 - lr: 0.000023 - momentum: 0.000000
2023-10-13 08:30:46,179 epoch 4 - iter 54/275 - loss 0.08226076 - time (sec): 2.80 - samples/sec: 1570.96 - lr: 0.000023 - momentum: 0.000000
2023-10-13 08:30:47,582 epoch 4 - iter 81/275 - loss 0.06455288 - time (sec): 4.20 - samples/sec: 1614.32 - lr: 0.000022 - momentum: 0.000000
2023-10-13 08:30:48,954 epoch 4 - iter 108/275 - loss 0.07124220 - time (sec): 5.58 - samples/sec: 1586.17 - lr: 0.000022 - momentum: 0.000000
2023-10-13 08:30:50,353 epoch 4 - iter 135/275 - loss 0.07867153 - time (sec): 6.98 - samples/sec: 1598.33 - lr: 0.000022 - momentum: 0.000000
2023-10-13 08:30:51,688 epoch 4 - iter 162/275 - loss 0.07905647 - time (sec): 8.31 - samples/sec: 1617.34 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:30:53,061 epoch 4 - iter 189/275 - loss 0.07773678 - time (sec): 9.68 - samples/sec: 1621.71 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:30:54,274 epoch 4 - iter 216/275 - loss 0.07725977 - time (sec): 10.90 - samples/sec: 1632.74 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:30:55,444 epoch 4 - iter 243/275 - loss 0.07933465 - time (sec): 12.07 - samples/sec: 1642.09 - lr: 0.000020 - momentum: 0.000000
2023-10-13 08:30:56,612 epoch 4 - iter 270/275 - loss 0.07839244 - time (sec): 13.23 - samples/sec: 1689.29 - lr: 0.000020 - momentum: 0.000000
2023-10-13 08:30:56,828 ----------------------------------------------------------------------------------------------------
2023-10-13 08:30:56,829 EPOCH 4 done: loss 0.0774 - lr: 0.000020
2023-10-13 08:30:57,572 DEV : loss 0.15350772440433502 - f1-score (micro avg)  0.8758
2023-10-13 08:30:57,578 saving best model
2023-10-13 08:30:58,200 ----------------------------------------------------------------------------------------------------
2023-10-13 08:30:59,595 epoch 5 - iter 27/275 - loss 0.07548554 - time (sec): 1.39 - samples/sec: 1754.44 - lr: 0.000020 - momentum: 0.000000
2023-10-13 08:31:01,038 epoch 5 - iter 54/275 - loss 0.06764304 - time (sec): 2.84 - samples/sec: 1684.43 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:31:02,436 epoch 5 - iter 81/275 - loss 0.06984076 - time (sec): 4.23 - samples/sec: 1630.67 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:31:03,882 epoch 5 - iter 108/275 - loss 0.06004683 - time (sec): 5.68 - samples/sec: 1601.75 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:31:05,333 epoch 5 - iter 135/275 - loss 0.06436743 - time (sec): 7.13 - samples/sec: 1583.01 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:31:06,783 epoch 5 - iter 162/275 - loss 0.05845132 - time (sec): 8.58 - samples/sec: 1550.48 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:31:08,243 epoch 5 - iter 189/275 - loss 0.05821264 - time (sec): 10.04 - samples/sec: 1552.31 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:31:09,661 epoch 5 - iter 216/275 - loss 0.06126030 - time (sec): 11.46 - samples/sec: 1545.09 - lr: 0.000017 - momentum: 0.000000
2023-10-13 08:31:11,113 epoch 5 - iter 243/275 - loss 0.05900075 - time (sec): 12.91 - samples/sec: 1561.69 - lr: 0.000017 - momentum: 0.000000
2023-10-13 08:31:12,497 epoch 5 - iter 270/275 - loss 0.05727806 - time (sec): 14.30 - samples/sec: 1563.51 - lr: 0.000017 - momentum: 0.000000
2023-10-13 08:31:12,765 ----------------------------------------------------------------------------------------------------
2023-10-13 08:31:12,765 EPOCH 5 done: loss 0.0604 - lr: 0.000017
2023-10-13 08:31:13,425 DEV : loss 0.15178388357162476 - f1-score (micro avg)  0.8668
2023-10-13 08:31:13,430 ----------------------------------------------------------------------------------------------------
2023-10-13 08:31:14,809 epoch 6 - iter 27/275 - loss 0.04081421 - time (sec): 1.38 - samples/sec: 1709.43 - lr: 0.000016 - momentum: 0.000000
2023-10-13 08:31:16,072 epoch 6 - iter 54/275 - loss 0.04499500 - time (sec): 2.64 - samples/sec: 1795.16 - lr: 0.000016 - momentum: 0.000000
2023-10-13 08:31:17,259 epoch 6 - iter 81/275 - loss 0.04264265 - time (sec): 3.83 - samples/sec: 1755.59 - lr: 0.000016 - momentum: 0.000000
2023-10-13 08:31:18,451 epoch 6 - iter 108/275 - loss 0.04066899 - time (sec): 5.02 - samples/sec: 1764.48 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:31:19,876 epoch 6 - iter 135/275 - loss 0.04266846 - time (sec): 6.44 - samples/sec: 1728.64 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:31:21,313 epoch 6 - iter 162/275 - loss 0.03859168 - time (sec): 7.88 - samples/sec: 1690.96 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:31:22,664 epoch 6 - iter 189/275 - loss 0.04050303 - time (sec): 9.23 - samples/sec: 1669.95 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:31:23,900 epoch 6 - iter 216/275 - loss 0.03833768 - time (sec): 10.47 - samples/sec: 1692.11 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:31:25,180 epoch 6 - iter 243/275 - loss 0.04402705 - time (sec): 11.75 - samples/sec: 1718.16 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:31:26,464 epoch 6 - iter 270/275 - loss 0.04151386 - time (sec): 13.03 - samples/sec: 1721.61 - lr: 0.000013 - momentum: 0.000000
2023-10-13 08:31:26,680 ----------------------------------------------------------------------------------------------------
2023-10-13 08:31:26,680 EPOCH 6 done: loss 0.0422 - lr: 0.000013
2023-10-13 08:31:27,425 DEV : loss 0.15648043155670166 - f1-score (micro avg)  0.8775
2023-10-13 08:31:27,431 saving best model
2023-10-13 08:31:28,034 ----------------------------------------------------------------------------------------------------
2023-10-13 08:31:29,450 epoch 7 - iter 27/275 - loss 0.04169935 - time (sec): 1.41 - samples/sec: 1607.86 - lr: 0.000013 - momentum: 0.000000
2023-10-13 08:31:30,721 epoch 7 - iter 54/275 - loss 0.02824331 - time (sec): 2.68 - samples/sec: 1592.78 - lr: 0.000013 - momentum: 0.000000
2023-10-13 08:31:31,988 epoch 7 - iter 81/275 - loss 0.03815050 - time (sec): 3.95 - samples/sec: 1679.31 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:31:33,215 epoch 7 - iter 108/275 - loss 0.02987254 - time (sec): 5.18 - samples/sec: 1722.11 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:31:34,512 epoch 7 - iter 135/275 - loss 0.03424007 - time (sec): 6.47 - samples/sec: 1730.27 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:31:35,896 epoch 7 - iter 162/275 - loss 0.03450026 - time (sec): 7.86 - samples/sec: 1708.45 - lr: 0.000011 - momentum: 0.000000
2023-10-13 08:31:37,308 epoch 7 - iter 189/275 - loss 0.03417843 - time (sec): 9.27 - samples/sec: 1706.92 - lr: 0.000011 - momentum: 0.000000
2023-10-13 08:31:38,693 epoch 7 - iter 216/275 - loss 0.03320135 - time (sec): 10.66 - samples/sec: 1678.75 - lr: 0.000011 - momentum: 0.000000
2023-10-13 08:31:40,145 epoch 7 - iter 243/275 - loss 0.02986744 - time (sec): 12.11 - samples/sec: 1667.99 - lr: 0.000010 - momentum: 0.000000
2023-10-13 08:31:41,528 epoch 7 - iter 270/275 - loss 0.03255562 - time (sec): 13.49 - samples/sec: 1657.39 - lr: 0.000010 - momentum: 0.000000
2023-10-13 08:31:41,742 ----------------------------------------------------------------------------------------------------
2023-10-13 08:31:41,743 EPOCH 7 done: loss 0.0320 - lr: 0.000010
2023-10-13 08:31:42,446 DEV : loss 0.1622074544429779 - f1-score (micro avg)  0.8645
2023-10-13 08:31:42,453 ----------------------------------------------------------------------------------------------------
2023-10-13 08:31:43,828 epoch 8 - iter 27/275 - loss 0.01838056 - time (sec): 1.37 - samples/sec: 1668.51 - lr: 0.000010 - momentum: 0.000000
2023-10-13 08:31:45,182 epoch 8 - iter 54/275 - loss 0.02235674 - time (sec): 2.73 - samples/sec: 1620.96 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:31:46,523 epoch 8 - iter 81/275 - loss 0.01827360 - time (sec): 4.07 - samples/sec: 1652.60 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:31:47,933 epoch 8 - iter 108/275 - loss 0.02429007 - time (sec): 5.48 - samples/sec: 1669.54 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:31:49,349 epoch 8 - iter 135/275 - loss 0.02657182 - time (sec): 6.89 - samples/sec: 1646.59 - lr: 0.000008 - momentum: 0.000000
2023-10-13 08:31:50,782 epoch 8 - iter 162/275 - loss 0.02556321 - time (sec): 8.33 - samples/sec: 1634.43 - lr: 0.000008 - momentum: 0.000000
2023-10-13 08:31:52,192 epoch 8 - iter 189/275 - loss 0.02914361 - time (sec): 9.74 - samples/sec: 1624.79 - lr: 0.000008 - momentum: 0.000000
2023-10-13 08:31:53,585 epoch 8 - iter 216/275 - loss 0.02779016 - time (sec): 11.13 - samples/sec: 1596.03 - lr: 0.000007 - momentum: 0.000000
2023-10-13 08:31:55,003 epoch 8 - iter 243/275 - loss 0.02659038 - time (sec): 12.55 - samples/sec: 1597.71 - lr: 0.000007 - momentum: 0.000000
2023-10-13 08:31:56,388 epoch 8 - iter 270/275 - loss 0.02472247 - time (sec): 13.93 - samples/sec: 1599.82 - lr: 0.000007 - momentum: 0.000000
2023-10-13 08:31:56,638 ----------------------------------------------------------------------------------------------------
2023-10-13 08:31:56,638 EPOCH 8 done: loss 0.0265 - lr: 0.000007
2023-10-13 08:31:57,338 DEV : loss 0.15169711410999298 - f1-score (micro avg)  0.894
2023-10-13 08:31:57,344 saving best model
2023-10-13 08:31:57,896 ----------------------------------------------------------------------------------------------------
2023-10-13 08:31:59,298 epoch 9 - iter 27/275 - loss 0.02854229 - time (sec): 1.40 - samples/sec: 1622.74 - lr: 0.000006 - momentum: 0.000000
2023-10-13 08:32:00,683 epoch 9 - iter 54/275 - loss 0.01793449 - time (sec): 2.79 - samples/sec: 1561.20 - lr: 0.000006 - momentum: 0.000000
2023-10-13 08:32:02,087 epoch 9 - iter 81/275 - loss 0.01751264 - time (sec): 4.19 - samples/sec: 1572.81 - lr: 0.000006 - momentum: 0.000000
2023-10-13 08:32:03,475 epoch 9 - iter 108/275 - loss 0.01705168 - time (sec): 5.58 - samples/sec: 1531.77 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:32:04,888 epoch 9 - iter 135/275 - loss 0.02420730 - time (sec): 6.99 - samples/sec: 1593.00 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:32:06,284 epoch 9 - iter 162/275 - loss 0.02315029 - time (sec): 8.39 - samples/sec: 1623.26 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:32:07,954 epoch 9 - iter 189/275 - loss 0.02030702 - time (sec): 10.06 - samples/sec: 1574.07 - lr: 0.000004 - momentum: 0.000000
2023-10-13 08:32:09,750 epoch 9 - iter 216/275 - loss 0.02223492 - time (sec): 11.85 - samples/sec: 1521.39 - lr: 0.000004 - momentum: 0.000000
2023-10-13 08:32:11,140 epoch 9 - iter 243/275 - loss 0.02034742 - time (sec): 13.24 - samples/sec: 1520.43 - lr: 0.000004 - momentum: 0.000000
2023-10-13 08:32:12,486 epoch 9 - iter 270/275 - loss 0.02192502 - time (sec): 14.59 - samples/sec: 1530.07 - lr: 0.000003 - momentum: 0.000000
2023-10-13 08:32:12,733 ----------------------------------------------------------------------------------------------------
2023-10-13 08:32:12,733 EPOCH 9 done: loss 0.0216 - lr: 0.000003
2023-10-13 08:32:13,467 DEV : loss 0.14888478815555573 - f1-score (micro avg)  0.8951
2023-10-13 08:32:13,474 saving best model
2023-10-13 08:32:14,259 ----------------------------------------------------------------------------------------------------
2023-10-13 08:32:15,685 epoch 10 - iter 27/275 - loss 0.03725164 - time (sec): 1.42 - samples/sec: 1607.61 - lr: 0.000003 - momentum: 0.000000
2023-10-13 08:32:17,128 epoch 10 - iter 54/275 - loss 0.04843116 - time (sec): 2.87 - samples/sec: 1594.73 - lr: 0.000003 - momentum: 0.000000
2023-10-13 08:32:18,538 epoch 10 - iter 81/275 - loss 0.03243751 - time (sec): 4.28 - samples/sec: 1633.39 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:32:20,014 epoch 10 - iter 108/275 - loss 0.03059973 - time (sec): 5.75 - samples/sec: 1584.55 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:32:21,378 epoch 10 - iter 135/275 - loss 0.02487169 - time (sec): 7.12 - samples/sec: 1582.45 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:32:22,789 epoch 10 - iter 162/275 - loss 0.02418583 - time (sec): 8.53 - samples/sec: 1616.61 - lr: 0.000001 - momentum: 0.000000
2023-10-13 08:32:24,210 epoch 10 - iter 189/275 - loss 0.02168156 - time (sec): 9.95 - samples/sec: 1595.54 - lr: 0.000001 - momentum: 0.000000
2023-10-13 08:32:25,575 epoch 10 - iter 216/275 - loss 0.01915487 - time (sec): 11.31 - samples/sec: 1591.14 - lr: 0.000001 - momentum: 0.000000
2023-10-13 08:32:26,927 epoch 10 - iter 243/275 - loss 0.01800133 - time (sec): 12.67 - samples/sec: 1585.16 - lr: 0.000000 - momentum: 0.000000
2023-10-13 08:32:28,275 epoch 10 - iter 270/275 - loss 0.01827690 - time (sec): 14.01 - samples/sec: 1589.32 - lr: 0.000000 - momentum: 0.000000
2023-10-13 08:32:28,531 ----------------------------------------------------------------------------------------------------
2023-10-13 08:32:28,531 EPOCH 10 done: loss 0.0179 - lr: 0.000000
2023-10-13 08:32:29,219 DEV : loss 0.15245532989501953 - f1-score (micro avg)  0.894
2023-10-13 08:32:29,686 ----------------------------------------------------------------------------------------------------
2023-10-13 08:32:29,687 Loading model from best epoch ...
2023-10-13 08:32:31,411 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-13 08:32:32,043 
Results:
- F-score (micro) 0.9217
- F-score (macro) 0.8466
- Accuracy 0.8652

By class:
              precision    recall  f1-score   support

       scope     0.8950    0.9205    0.9076       176
        pers     0.9683    0.9531    0.9606       128
        work     0.9041    0.8919    0.8980        74
         loc     0.6667    1.0000    0.8000         2
      object     1.0000    0.5000    0.6667         2

   micro avg     0.9193    0.9241    0.9217       382
   macro avg     0.8868    0.8531    0.8466       382
weighted avg     0.9207    0.9241    0.9217       382

2023-10-13 08:32:32,043 ----------------------------------------------------------------------------------------------------