File size: 23,897 Bytes
d8c9a27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
2023-10-13 09:01:06,799 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:06,800 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(32001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=25, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-13 09:01:06,800 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:06,800 MultiCorpus: 1214 train + 266 dev + 251 test sentences
- NER_HIPE_2022 Corpus: 1214 train + 266 dev + 251 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/en/with_doc_seperator
2023-10-13 09:01:06,800 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:06,800 Train: 1214 sentences
2023-10-13 09:01:06,800 (train_with_dev=False, train_with_test=False)
2023-10-13 09:01:06,801 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:06,801 Training Params:
2023-10-13 09:01:06,801 - learning_rate: "3e-05"
2023-10-13 09:01:06,801 - mini_batch_size: "4"
2023-10-13 09:01:06,801 - max_epochs: "10"
2023-10-13 09:01:06,801 - shuffle: "True"
2023-10-13 09:01:06,801 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:06,801 Plugins:
2023-10-13 09:01:06,801 - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 09:01:06,801 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:06,801 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 09:01:06,801 - metric: "('micro avg', 'f1-score')"
2023-10-13 09:01:06,801 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:06,801 Computation:
2023-10-13 09:01:06,801 - compute on device: cuda:0
2023-10-13 09:01:06,801 - embedding storage: none
2023-10-13 09:01:06,801 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:06,801 Model training base path: "hmbench-ajmc/en-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-13 09:01:06,801 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:06,801 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:09,388 epoch 1 - iter 30/304 - loss 3.40050317 - time (sec): 2.59 - samples/sec: 1251.05 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:01:10,711 epoch 1 - iter 60/304 - loss 2.96319610 - time (sec): 3.91 - samples/sec: 1632.20 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:01:12,024 epoch 1 - iter 90/304 - loss 2.22978533 - time (sec): 5.22 - samples/sec: 1862.60 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:01:13,349 epoch 1 - iter 120/304 - loss 1.85975330 - time (sec): 6.55 - samples/sec: 1964.06 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:01:14,660 epoch 1 - iter 150/304 - loss 1.61169959 - time (sec): 7.86 - samples/sec: 2023.66 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:01:15,984 epoch 1 - iter 180/304 - loss 1.44135127 - time (sec): 9.18 - samples/sec: 2031.26 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:01:17,331 epoch 1 - iter 210/304 - loss 1.27621715 - time (sec): 10.53 - samples/sec: 2080.67 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:01:18,640 epoch 1 - iter 240/304 - loss 1.16340234 - time (sec): 11.84 - samples/sec: 2093.13 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:01:19,960 epoch 1 - iter 270/304 - loss 1.07642680 - time (sec): 13.16 - samples/sec: 2095.69 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:01:21,268 epoch 1 - iter 300/304 - loss 0.99624251 - time (sec): 14.47 - samples/sec: 2117.14 - lr: 0.000030 - momentum: 0.000000
2023-10-13 09:01:21,446 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:21,446 EPOCH 1 done: loss 0.9872 - lr: 0.000030
2023-10-13 09:01:22,377 DEV : loss 0.23720592260360718 - f1-score (micro avg) 0.5167
2023-10-13 09:01:22,385 saving best model
2023-10-13 09:01:22,860 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:24,176 epoch 2 - iter 30/304 - loss 0.22148770 - time (sec): 1.31 - samples/sec: 2349.65 - lr: 0.000030 - momentum: 0.000000
2023-10-13 09:01:25,466 epoch 2 - iter 60/304 - loss 0.22348749 - time (sec): 2.61 - samples/sec: 2298.63 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:01:26,798 epoch 2 - iter 90/304 - loss 0.18914858 - time (sec): 3.94 - samples/sec: 2342.72 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:01:28,112 epoch 2 - iter 120/304 - loss 0.18052355 - time (sec): 5.25 - samples/sec: 2299.33 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:01:29,443 epoch 2 - iter 150/304 - loss 0.16611600 - time (sec): 6.58 - samples/sec: 2338.04 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:01:30,751 epoch 2 - iter 180/304 - loss 0.16059345 - time (sec): 7.89 - samples/sec: 2345.81 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:01:32,049 epoch 2 - iter 210/304 - loss 0.16048340 - time (sec): 9.19 - samples/sec: 2373.92 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:01:33,373 epoch 2 - iter 240/304 - loss 0.16403089 - time (sec): 10.51 - samples/sec: 2351.52 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:01:34,693 epoch 2 - iter 270/304 - loss 0.16086139 - time (sec): 11.83 - samples/sec: 2326.24 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:01:36,172 epoch 2 - iter 300/304 - loss 0.15317695 - time (sec): 13.31 - samples/sec: 2309.07 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:01:36,342 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:36,342 EPOCH 2 done: loss 0.1529 - lr: 0.000027
2023-10-13 09:01:37,237 DEV : loss 0.15026724338531494 - f1-score (micro avg) 0.7944
2023-10-13 09:01:37,243 saving best model
2023-10-13 09:01:37,822 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:39,162 epoch 3 - iter 30/304 - loss 0.05069063 - time (sec): 1.34 - samples/sec: 2247.73 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:01:40,491 epoch 3 - iter 60/304 - loss 0.07144414 - time (sec): 2.67 - samples/sec: 2275.43 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:01:41,843 epoch 3 - iter 90/304 - loss 0.08697225 - time (sec): 4.02 - samples/sec: 2244.13 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:01:43,163 epoch 3 - iter 120/304 - loss 0.08548438 - time (sec): 5.34 - samples/sec: 2263.70 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:01:44,459 epoch 3 - iter 150/304 - loss 0.09596620 - time (sec): 6.64 - samples/sec: 2257.80 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:01:45,799 epoch 3 - iter 180/304 - loss 0.09258520 - time (sec): 7.98 - samples/sec: 2263.59 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:01:47,150 epoch 3 - iter 210/304 - loss 0.09448288 - time (sec): 9.33 - samples/sec: 2308.92 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:01:48,486 epoch 3 - iter 240/304 - loss 0.09343742 - time (sec): 10.66 - samples/sec: 2311.57 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:01:49,829 epoch 3 - iter 270/304 - loss 0.08885765 - time (sec): 12.01 - samples/sec: 2291.17 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:01:51,136 epoch 3 - iter 300/304 - loss 0.08661682 - time (sec): 13.31 - samples/sec: 2304.60 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:01:51,311 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:51,311 EPOCH 3 done: loss 0.0888 - lr: 0.000023
2023-10-13 09:01:52,211 DEV : loss 0.15172874927520752 - f1-score (micro avg) 0.8237
2023-10-13 09:01:52,217 saving best model
2023-10-13 09:01:52,889 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:54,170 epoch 4 - iter 30/304 - loss 0.02760543 - time (sec): 1.28 - samples/sec: 2355.48 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:01:55,450 epoch 4 - iter 60/304 - loss 0.07114577 - time (sec): 2.56 - samples/sec: 2394.31 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:01:56,721 epoch 4 - iter 90/304 - loss 0.06279818 - time (sec): 3.83 - samples/sec: 2403.52 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:01:57,979 epoch 4 - iter 120/304 - loss 0.06289064 - time (sec): 5.09 - samples/sec: 2393.63 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:01:59,329 epoch 4 - iter 150/304 - loss 0.06413469 - time (sec): 6.44 - samples/sec: 2343.87 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:02:00,651 epoch 4 - iter 180/304 - loss 0.06212759 - time (sec): 7.76 - samples/sec: 2348.66 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:02:01,975 epoch 4 - iter 210/304 - loss 0.06043917 - time (sec): 9.08 - samples/sec: 2338.99 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:02:03,288 epoch 4 - iter 240/304 - loss 0.05862333 - time (sec): 10.40 - samples/sec: 2316.68 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:02:04,621 epoch 4 - iter 270/304 - loss 0.05843536 - time (sec): 11.73 - samples/sec: 2342.41 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:02:05,974 epoch 4 - iter 300/304 - loss 0.06313090 - time (sec): 13.08 - samples/sec: 2339.82 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:02:06,147 ----------------------------------------------------------------------------------------------------
2023-10-13 09:02:06,147 EPOCH 4 done: loss 0.0634 - lr: 0.000020
2023-10-13 09:02:07,070 DEV : loss 0.17067818343639374 - f1-score (micro avg) 0.8197
2023-10-13 09:02:07,076 ----------------------------------------------------------------------------------------------------
2023-10-13 09:02:08,401 epoch 5 - iter 30/304 - loss 0.05422141 - time (sec): 1.32 - samples/sec: 2519.92 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:02:09,802 epoch 5 - iter 60/304 - loss 0.04545324 - time (sec): 2.72 - samples/sec: 2265.69 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:02:11,131 epoch 5 - iter 90/304 - loss 0.04471901 - time (sec): 4.05 - samples/sec: 2336.17 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:02:12,410 epoch 5 - iter 120/304 - loss 0.04286872 - time (sec): 5.33 - samples/sec: 2356.80 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:02:13,676 epoch 5 - iter 150/304 - loss 0.04197271 - time (sec): 6.60 - samples/sec: 2353.98 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:02:15,016 epoch 5 - iter 180/304 - loss 0.04147644 - time (sec): 7.94 - samples/sec: 2351.34 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:02:16,355 epoch 5 - iter 210/304 - loss 0.04183084 - time (sec): 9.28 - samples/sec: 2329.96 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:02:17,684 epoch 5 - iter 240/304 - loss 0.03928846 - time (sec): 10.61 - samples/sec: 2355.03 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:02:18,989 epoch 5 - iter 270/304 - loss 0.04104058 - time (sec): 11.91 - samples/sec: 2338.67 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:02:20,290 epoch 5 - iter 300/304 - loss 0.04669995 - time (sec): 13.21 - samples/sec: 2323.64 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:02:20,460 ----------------------------------------------------------------------------------------------------
2023-10-13 09:02:20,460 EPOCH 5 done: loss 0.0470 - lr: 0.000017
2023-10-13 09:02:21,393 DEV : loss 0.17316469550132751 - f1-score (micro avg) 0.8376
2023-10-13 09:02:21,399 saving best model
2023-10-13 09:02:22,002 ----------------------------------------------------------------------------------------------------
2023-10-13 09:02:23,358 epoch 6 - iter 30/304 - loss 0.03247053 - time (sec): 1.35 - samples/sec: 2463.58 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:02:24,648 epoch 6 - iter 60/304 - loss 0.03171894 - time (sec): 2.64 - samples/sec: 2300.97 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:02:25,956 epoch 6 - iter 90/304 - loss 0.03519381 - time (sec): 3.95 - samples/sec: 2324.05 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:02:27,295 epoch 6 - iter 120/304 - loss 0.03113449 - time (sec): 5.29 - samples/sec: 2396.79 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:02:28,623 epoch 6 - iter 150/304 - loss 0.03491689 - time (sec): 6.62 - samples/sec: 2351.08 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:02:29,939 epoch 6 - iter 180/304 - loss 0.03395763 - time (sec): 7.94 - samples/sec: 2336.92 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:02:31,233 epoch 6 - iter 210/304 - loss 0.03204121 - time (sec): 9.23 - samples/sec: 2298.61 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:02:32,580 epoch 6 - iter 240/304 - loss 0.03089909 - time (sec): 10.58 - samples/sec: 2304.24 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:02:33,971 epoch 6 - iter 270/304 - loss 0.03622043 - time (sec): 11.97 - samples/sec: 2304.75 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:02:35,281 epoch 6 - iter 300/304 - loss 0.03510874 - time (sec): 13.28 - samples/sec: 2304.49 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:02:35,450 ----------------------------------------------------------------------------------------------------
2023-10-13 09:02:35,450 EPOCH 6 done: loss 0.0352 - lr: 0.000013
2023-10-13 09:02:36,363 DEV : loss 0.18857930600643158 - f1-score (micro avg) 0.8324
2023-10-13 09:02:36,368 ----------------------------------------------------------------------------------------------------
2023-10-13 09:02:37,657 epoch 7 - iter 30/304 - loss 0.03699191 - time (sec): 1.29 - samples/sec: 2183.21 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:02:38,984 epoch 7 - iter 60/304 - loss 0.03397541 - time (sec): 2.61 - samples/sec: 2246.55 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:02:40,293 epoch 7 - iter 90/304 - loss 0.03917064 - time (sec): 3.92 - samples/sec: 2265.81 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:02:41,639 epoch 7 - iter 120/304 - loss 0.03462082 - time (sec): 5.27 - samples/sec: 2349.37 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:02:42,974 epoch 7 - iter 150/304 - loss 0.03164356 - time (sec): 6.60 - samples/sec: 2298.37 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:02:44,375 epoch 7 - iter 180/304 - loss 0.02856759 - time (sec): 8.01 - samples/sec: 2295.30 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:02:45,728 epoch 7 - iter 210/304 - loss 0.02535493 - time (sec): 9.36 - samples/sec: 2258.28 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:02:47,048 epoch 7 - iter 240/304 - loss 0.02954486 - time (sec): 10.68 - samples/sec: 2259.26 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:02:48,359 epoch 7 - iter 270/304 - loss 0.02999567 - time (sec): 11.99 - samples/sec: 2276.71 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:02:49,705 epoch 7 - iter 300/304 - loss 0.02936003 - time (sec): 13.34 - samples/sec: 2292.34 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:02:49,893 ----------------------------------------------------------------------------------------------------
2023-10-13 09:02:49,893 EPOCH 7 done: loss 0.0290 - lr: 0.000010
2023-10-13 09:02:50,967 DEV : loss 0.21805648505687714 - f1-score (micro avg) 0.8234
2023-10-13 09:02:50,973 ----------------------------------------------------------------------------------------------------
2023-10-13 09:02:52,268 epoch 8 - iter 30/304 - loss 0.01719997 - time (sec): 1.29 - samples/sec: 2250.33 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:02:53,582 epoch 8 - iter 60/304 - loss 0.01190032 - time (sec): 2.61 - samples/sec: 2243.24 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:02:54,896 epoch 8 - iter 90/304 - loss 0.01599804 - time (sec): 3.92 - samples/sec: 2286.79 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:02:56,185 epoch 8 - iter 120/304 - loss 0.01795423 - time (sec): 5.21 - samples/sec: 2323.66 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:02:57,480 epoch 8 - iter 150/304 - loss 0.01844222 - time (sec): 6.51 - samples/sec: 2352.00 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:02:58,752 epoch 8 - iter 180/304 - loss 0.01586027 - time (sec): 7.78 - samples/sec: 2323.80 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:03:00,024 epoch 8 - iter 210/304 - loss 0.01718384 - time (sec): 9.05 - samples/sec: 2342.58 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:03:01,311 epoch 8 - iter 240/304 - loss 0.01548976 - time (sec): 10.34 - samples/sec: 2357.21 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:03:02,669 epoch 8 - iter 270/304 - loss 0.01963074 - time (sec): 11.69 - samples/sec: 2366.98 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:03:03,975 epoch 8 - iter 300/304 - loss 0.02125844 - time (sec): 13.00 - samples/sec: 2358.11 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:03:04,145 ----------------------------------------------------------------------------------------------------
2023-10-13 09:03:04,145 EPOCH 8 done: loss 0.0210 - lr: 0.000007
2023-10-13 09:03:05,089 DEV : loss 0.20849579572677612 - f1-score (micro avg) 0.8287
2023-10-13 09:03:05,096 ----------------------------------------------------------------------------------------------------
2023-10-13 09:03:06,448 epoch 9 - iter 30/304 - loss 0.02793687 - time (sec): 1.35 - samples/sec: 2381.56 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:03:07,844 epoch 9 - iter 60/304 - loss 0.01535474 - time (sec): 2.75 - samples/sec: 2267.84 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:03:09,176 epoch 9 - iter 90/304 - loss 0.01314652 - time (sec): 4.08 - samples/sec: 2240.24 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:03:10,504 epoch 9 - iter 120/304 - loss 0.01852826 - time (sec): 5.41 - samples/sec: 2295.89 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:03:11,872 epoch 9 - iter 150/304 - loss 0.01964515 - time (sec): 6.78 - samples/sec: 2303.83 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:03:13,206 epoch 9 - iter 180/304 - loss 0.01872359 - time (sec): 8.11 - samples/sec: 2289.97 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:03:14,518 epoch 9 - iter 210/304 - loss 0.01878046 - time (sec): 9.42 - samples/sec: 2281.06 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:03:15,880 epoch 9 - iter 240/304 - loss 0.01671311 - time (sec): 10.78 - samples/sec: 2299.79 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:03:17,237 epoch 9 - iter 270/304 - loss 0.01607859 - time (sec): 12.14 - samples/sec: 2284.21 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:03:18,552 epoch 9 - iter 300/304 - loss 0.01568710 - time (sec): 13.46 - samples/sec: 2284.74 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:03:18,727 ----------------------------------------------------------------------------------------------------
2023-10-13 09:03:18,728 EPOCH 9 done: loss 0.0156 - lr: 0.000003
2023-10-13 09:03:19,646 DEV : loss 0.20852698385715485 - f1-score (micro avg) 0.8327
2023-10-13 09:03:19,652 ----------------------------------------------------------------------------------------------------
2023-10-13 09:03:20,968 epoch 10 - iter 30/304 - loss 0.01516768 - time (sec): 1.32 - samples/sec: 2379.19 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:03:22,283 epoch 10 - iter 60/304 - loss 0.00807043 - time (sec): 2.63 - samples/sec: 2350.40 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:03:23,607 epoch 10 - iter 90/304 - loss 0.00923733 - time (sec): 3.95 - samples/sec: 2311.19 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:03:24,941 epoch 10 - iter 120/304 - loss 0.00860137 - time (sec): 5.29 - samples/sec: 2278.31 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:03:26,279 epoch 10 - iter 150/304 - loss 0.00946498 - time (sec): 6.63 - samples/sec: 2262.10 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:03:27,662 epoch 10 - iter 180/304 - loss 0.01013030 - time (sec): 8.01 - samples/sec: 2269.90 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:03:29,050 epoch 10 - iter 210/304 - loss 0.01109952 - time (sec): 9.40 - samples/sec: 2273.78 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:03:30,424 epoch 10 - iter 240/304 - loss 0.01112300 - time (sec): 10.77 - samples/sec: 2271.00 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:03:31,805 epoch 10 - iter 270/304 - loss 0.01275687 - time (sec): 12.15 - samples/sec: 2262.27 - lr: 0.000000 - momentum: 0.000000
2023-10-13 09:03:33,210 epoch 10 - iter 300/304 - loss 0.01208816 - time (sec): 13.56 - samples/sec: 2255.26 - lr: 0.000000 - momentum: 0.000000
2023-10-13 09:03:33,403 ----------------------------------------------------------------------------------------------------
2023-10-13 09:03:33,403 EPOCH 10 done: loss 0.0121 - lr: 0.000000
2023-10-13 09:03:34,323 DEV : loss 0.21789805591106415 - f1-score (micro avg) 0.826
2023-10-13 09:03:34,892 ----------------------------------------------------------------------------------------------------
2023-10-13 09:03:34,893 Loading model from best epoch ...
2023-10-13 09:03:37,263 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-date, B-date, E-date, I-date, S-object, B-object, E-object, I-object
2023-10-13 09:03:38,134
Results:
- F-score (micro) 0.787
- F-score (macro) 0.4777
- Accuracy 0.6576
By class:
precision recall f1-score support
scope 0.7662 0.7815 0.7738 151
pers 0.7417 0.9271 0.8241 96
work 0.7217 0.8737 0.7905 95
loc 0.0000 0.0000 0.0000 3
date 0.0000 0.0000 0.0000 3
micro avg 0.7455 0.8333 0.7870 348
macro avg 0.4459 0.5164 0.4777 348
weighted avg 0.7341 0.8333 0.7789 348
2023-10-13 09:03:38,135 ----------------------------------------------------------------------------------------------------
|