File size: 23,897 Bytes
d8c9a27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
2023-10-13 09:01:06,799 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:06,800 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-13 09:01:06,800 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:06,800 MultiCorpus: 1214 train + 266 dev + 251 test sentences
 - NER_HIPE_2022 Corpus: 1214 train + 266 dev + 251 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/en/with_doc_seperator
2023-10-13 09:01:06,800 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:06,800 Train:  1214 sentences
2023-10-13 09:01:06,800         (train_with_dev=False, train_with_test=False)
2023-10-13 09:01:06,801 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:06,801 Training Params:
2023-10-13 09:01:06,801  - learning_rate: "3e-05" 
2023-10-13 09:01:06,801  - mini_batch_size: "4"
2023-10-13 09:01:06,801  - max_epochs: "10"
2023-10-13 09:01:06,801  - shuffle: "True"
2023-10-13 09:01:06,801 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:06,801 Plugins:
2023-10-13 09:01:06,801  - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 09:01:06,801 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:06,801 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 09:01:06,801  - metric: "('micro avg', 'f1-score')"
2023-10-13 09:01:06,801 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:06,801 Computation:
2023-10-13 09:01:06,801  - compute on device: cuda:0
2023-10-13 09:01:06,801  - embedding storage: none
2023-10-13 09:01:06,801 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:06,801 Model training base path: "hmbench-ajmc/en-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-13 09:01:06,801 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:06,801 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:09,388 epoch 1 - iter 30/304 - loss 3.40050317 - time (sec): 2.59 - samples/sec: 1251.05 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:01:10,711 epoch 1 - iter 60/304 - loss 2.96319610 - time (sec): 3.91 - samples/sec: 1632.20 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:01:12,024 epoch 1 - iter 90/304 - loss 2.22978533 - time (sec): 5.22 - samples/sec: 1862.60 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:01:13,349 epoch 1 - iter 120/304 - loss 1.85975330 - time (sec): 6.55 - samples/sec: 1964.06 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:01:14,660 epoch 1 - iter 150/304 - loss 1.61169959 - time (sec): 7.86 - samples/sec: 2023.66 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:01:15,984 epoch 1 - iter 180/304 - loss 1.44135127 - time (sec): 9.18 - samples/sec: 2031.26 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:01:17,331 epoch 1 - iter 210/304 - loss 1.27621715 - time (sec): 10.53 - samples/sec: 2080.67 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:01:18,640 epoch 1 - iter 240/304 - loss 1.16340234 - time (sec): 11.84 - samples/sec: 2093.13 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:01:19,960 epoch 1 - iter 270/304 - loss 1.07642680 - time (sec): 13.16 - samples/sec: 2095.69 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:01:21,268 epoch 1 - iter 300/304 - loss 0.99624251 - time (sec): 14.47 - samples/sec: 2117.14 - lr: 0.000030 - momentum: 0.000000
2023-10-13 09:01:21,446 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:21,446 EPOCH 1 done: loss 0.9872 - lr: 0.000030
2023-10-13 09:01:22,377 DEV : loss 0.23720592260360718 - f1-score (micro avg)  0.5167
2023-10-13 09:01:22,385 saving best model
2023-10-13 09:01:22,860 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:24,176 epoch 2 - iter 30/304 - loss 0.22148770 - time (sec): 1.31 - samples/sec: 2349.65 - lr: 0.000030 - momentum: 0.000000
2023-10-13 09:01:25,466 epoch 2 - iter 60/304 - loss 0.22348749 - time (sec): 2.61 - samples/sec: 2298.63 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:01:26,798 epoch 2 - iter 90/304 - loss 0.18914858 - time (sec): 3.94 - samples/sec: 2342.72 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:01:28,112 epoch 2 - iter 120/304 - loss 0.18052355 - time (sec): 5.25 - samples/sec: 2299.33 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:01:29,443 epoch 2 - iter 150/304 - loss 0.16611600 - time (sec): 6.58 - samples/sec: 2338.04 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:01:30,751 epoch 2 - iter 180/304 - loss 0.16059345 - time (sec): 7.89 - samples/sec: 2345.81 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:01:32,049 epoch 2 - iter 210/304 - loss 0.16048340 - time (sec): 9.19 - samples/sec: 2373.92 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:01:33,373 epoch 2 - iter 240/304 - loss 0.16403089 - time (sec): 10.51 - samples/sec: 2351.52 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:01:34,693 epoch 2 - iter 270/304 - loss 0.16086139 - time (sec): 11.83 - samples/sec: 2326.24 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:01:36,172 epoch 2 - iter 300/304 - loss 0.15317695 - time (sec): 13.31 - samples/sec: 2309.07 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:01:36,342 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:36,342 EPOCH 2 done: loss 0.1529 - lr: 0.000027
2023-10-13 09:01:37,237 DEV : loss 0.15026724338531494 - f1-score (micro avg)  0.7944
2023-10-13 09:01:37,243 saving best model
2023-10-13 09:01:37,822 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:39,162 epoch 3 - iter 30/304 - loss 0.05069063 - time (sec): 1.34 - samples/sec: 2247.73 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:01:40,491 epoch 3 - iter 60/304 - loss 0.07144414 - time (sec): 2.67 - samples/sec: 2275.43 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:01:41,843 epoch 3 - iter 90/304 - loss 0.08697225 - time (sec): 4.02 - samples/sec: 2244.13 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:01:43,163 epoch 3 - iter 120/304 - loss 0.08548438 - time (sec): 5.34 - samples/sec: 2263.70 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:01:44,459 epoch 3 - iter 150/304 - loss 0.09596620 - time (sec): 6.64 - samples/sec: 2257.80 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:01:45,799 epoch 3 - iter 180/304 - loss 0.09258520 - time (sec): 7.98 - samples/sec: 2263.59 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:01:47,150 epoch 3 - iter 210/304 - loss 0.09448288 - time (sec): 9.33 - samples/sec: 2308.92 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:01:48,486 epoch 3 - iter 240/304 - loss 0.09343742 - time (sec): 10.66 - samples/sec: 2311.57 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:01:49,829 epoch 3 - iter 270/304 - loss 0.08885765 - time (sec): 12.01 - samples/sec: 2291.17 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:01:51,136 epoch 3 - iter 300/304 - loss 0.08661682 - time (sec): 13.31 - samples/sec: 2304.60 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:01:51,311 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:51,311 EPOCH 3 done: loss 0.0888 - lr: 0.000023
2023-10-13 09:01:52,211 DEV : loss 0.15172874927520752 - f1-score (micro avg)  0.8237
2023-10-13 09:01:52,217 saving best model
2023-10-13 09:01:52,889 ----------------------------------------------------------------------------------------------------
2023-10-13 09:01:54,170 epoch 4 - iter 30/304 - loss 0.02760543 - time (sec): 1.28 - samples/sec: 2355.48 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:01:55,450 epoch 4 - iter 60/304 - loss 0.07114577 - time (sec): 2.56 - samples/sec: 2394.31 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:01:56,721 epoch 4 - iter 90/304 - loss 0.06279818 - time (sec): 3.83 - samples/sec: 2403.52 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:01:57,979 epoch 4 - iter 120/304 - loss 0.06289064 - time (sec): 5.09 - samples/sec: 2393.63 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:01:59,329 epoch 4 - iter 150/304 - loss 0.06413469 - time (sec): 6.44 - samples/sec: 2343.87 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:02:00,651 epoch 4 - iter 180/304 - loss 0.06212759 - time (sec): 7.76 - samples/sec: 2348.66 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:02:01,975 epoch 4 - iter 210/304 - loss 0.06043917 - time (sec): 9.08 - samples/sec: 2338.99 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:02:03,288 epoch 4 - iter 240/304 - loss 0.05862333 - time (sec): 10.40 - samples/sec: 2316.68 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:02:04,621 epoch 4 - iter 270/304 - loss 0.05843536 - time (sec): 11.73 - samples/sec: 2342.41 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:02:05,974 epoch 4 - iter 300/304 - loss 0.06313090 - time (sec): 13.08 - samples/sec: 2339.82 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:02:06,147 ----------------------------------------------------------------------------------------------------
2023-10-13 09:02:06,147 EPOCH 4 done: loss 0.0634 - lr: 0.000020
2023-10-13 09:02:07,070 DEV : loss 0.17067818343639374 - f1-score (micro avg)  0.8197
2023-10-13 09:02:07,076 ----------------------------------------------------------------------------------------------------
2023-10-13 09:02:08,401 epoch 5 - iter 30/304 - loss 0.05422141 - time (sec): 1.32 - samples/sec: 2519.92 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:02:09,802 epoch 5 - iter 60/304 - loss 0.04545324 - time (sec): 2.72 - samples/sec: 2265.69 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:02:11,131 epoch 5 - iter 90/304 - loss 0.04471901 - time (sec): 4.05 - samples/sec: 2336.17 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:02:12,410 epoch 5 - iter 120/304 - loss 0.04286872 - time (sec): 5.33 - samples/sec: 2356.80 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:02:13,676 epoch 5 - iter 150/304 - loss 0.04197271 - time (sec): 6.60 - samples/sec: 2353.98 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:02:15,016 epoch 5 - iter 180/304 - loss 0.04147644 - time (sec): 7.94 - samples/sec: 2351.34 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:02:16,355 epoch 5 - iter 210/304 - loss 0.04183084 - time (sec): 9.28 - samples/sec: 2329.96 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:02:17,684 epoch 5 - iter 240/304 - loss 0.03928846 - time (sec): 10.61 - samples/sec: 2355.03 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:02:18,989 epoch 5 - iter 270/304 - loss 0.04104058 - time (sec): 11.91 - samples/sec: 2338.67 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:02:20,290 epoch 5 - iter 300/304 - loss 0.04669995 - time (sec): 13.21 - samples/sec: 2323.64 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:02:20,460 ----------------------------------------------------------------------------------------------------
2023-10-13 09:02:20,460 EPOCH 5 done: loss 0.0470 - lr: 0.000017
2023-10-13 09:02:21,393 DEV : loss 0.17316469550132751 - f1-score (micro avg)  0.8376
2023-10-13 09:02:21,399 saving best model
2023-10-13 09:02:22,002 ----------------------------------------------------------------------------------------------------
2023-10-13 09:02:23,358 epoch 6 - iter 30/304 - loss 0.03247053 - time (sec): 1.35 - samples/sec: 2463.58 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:02:24,648 epoch 6 - iter 60/304 - loss 0.03171894 - time (sec): 2.64 - samples/sec: 2300.97 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:02:25,956 epoch 6 - iter 90/304 - loss 0.03519381 - time (sec): 3.95 - samples/sec: 2324.05 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:02:27,295 epoch 6 - iter 120/304 - loss 0.03113449 - time (sec): 5.29 - samples/sec: 2396.79 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:02:28,623 epoch 6 - iter 150/304 - loss 0.03491689 - time (sec): 6.62 - samples/sec: 2351.08 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:02:29,939 epoch 6 - iter 180/304 - loss 0.03395763 - time (sec): 7.94 - samples/sec: 2336.92 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:02:31,233 epoch 6 - iter 210/304 - loss 0.03204121 - time (sec): 9.23 - samples/sec: 2298.61 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:02:32,580 epoch 6 - iter 240/304 - loss 0.03089909 - time (sec): 10.58 - samples/sec: 2304.24 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:02:33,971 epoch 6 - iter 270/304 - loss 0.03622043 - time (sec): 11.97 - samples/sec: 2304.75 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:02:35,281 epoch 6 - iter 300/304 - loss 0.03510874 - time (sec): 13.28 - samples/sec: 2304.49 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:02:35,450 ----------------------------------------------------------------------------------------------------
2023-10-13 09:02:35,450 EPOCH 6 done: loss 0.0352 - lr: 0.000013
2023-10-13 09:02:36,363 DEV : loss 0.18857930600643158 - f1-score (micro avg)  0.8324
2023-10-13 09:02:36,368 ----------------------------------------------------------------------------------------------------
2023-10-13 09:02:37,657 epoch 7 - iter 30/304 - loss 0.03699191 - time (sec): 1.29 - samples/sec: 2183.21 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:02:38,984 epoch 7 - iter 60/304 - loss 0.03397541 - time (sec): 2.61 - samples/sec: 2246.55 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:02:40,293 epoch 7 - iter 90/304 - loss 0.03917064 - time (sec): 3.92 - samples/sec: 2265.81 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:02:41,639 epoch 7 - iter 120/304 - loss 0.03462082 - time (sec): 5.27 - samples/sec: 2349.37 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:02:42,974 epoch 7 - iter 150/304 - loss 0.03164356 - time (sec): 6.60 - samples/sec: 2298.37 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:02:44,375 epoch 7 - iter 180/304 - loss 0.02856759 - time (sec): 8.01 - samples/sec: 2295.30 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:02:45,728 epoch 7 - iter 210/304 - loss 0.02535493 - time (sec): 9.36 - samples/sec: 2258.28 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:02:47,048 epoch 7 - iter 240/304 - loss 0.02954486 - time (sec): 10.68 - samples/sec: 2259.26 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:02:48,359 epoch 7 - iter 270/304 - loss 0.02999567 - time (sec): 11.99 - samples/sec: 2276.71 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:02:49,705 epoch 7 - iter 300/304 - loss 0.02936003 - time (sec): 13.34 - samples/sec: 2292.34 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:02:49,893 ----------------------------------------------------------------------------------------------------
2023-10-13 09:02:49,893 EPOCH 7 done: loss 0.0290 - lr: 0.000010
2023-10-13 09:02:50,967 DEV : loss 0.21805648505687714 - f1-score (micro avg)  0.8234
2023-10-13 09:02:50,973 ----------------------------------------------------------------------------------------------------
2023-10-13 09:02:52,268 epoch 8 - iter 30/304 - loss 0.01719997 - time (sec): 1.29 - samples/sec: 2250.33 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:02:53,582 epoch 8 - iter 60/304 - loss 0.01190032 - time (sec): 2.61 - samples/sec: 2243.24 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:02:54,896 epoch 8 - iter 90/304 - loss 0.01599804 - time (sec): 3.92 - samples/sec: 2286.79 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:02:56,185 epoch 8 - iter 120/304 - loss 0.01795423 - time (sec): 5.21 - samples/sec: 2323.66 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:02:57,480 epoch 8 - iter 150/304 - loss 0.01844222 - time (sec): 6.51 - samples/sec: 2352.00 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:02:58,752 epoch 8 - iter 180/304 - loss 0.01586027 - time (sec): 7.78 - samples/sec: 2323.80 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:03:00,024 epoch 8 - iter 210/304 - loss 0.01718384 - time (sec): 9.05 - samples/sec: 2342.58 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:03:01,311 epoch 8 - iter 240/304 - loss 0.01548976 - time (sec): 10.34 - samples/sec: 2357.21 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:03:02,669 epoch 8 - iter 270/304 - loss 0.01963074 - time (sec): 11.69 - samples/sec: 2366.98 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:03:03,975 epoch 8 - iter 300/304 - loss 0.02125844 - time (sec): 13.00 - samples/sec: 2358.11 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:03:04,145 ----------------------------------------------------------------------------------------------------
2023-10-13 09:03:04,145 EPOCH 8 done: loss 0.0210 - lr: 0.000007
2023-10-13 09:03:05,089 DEV : loss 0.20849579572677612 - f1-score (micro avg)  0.8287
2023-10-13 09:03:05,096 ----------------------------------------------------------------------------------------------------
2023-10-13 09:03:06,448 epoch 9 - iter 30/304 - loss 0.02793687 - time (sec): 1.35 - samples/sec: 2381.56 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:03:07,844 epoch 9 - iter 60/304 - loss 0.01535474 - time (sec): 2.75 - samples/sec: 2267.84 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:03:09,176 epoch 9 - iter 90/304 - loss 0.01314652 - time (sec): 4.08 - samples/sec: 2240.24 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:03:10,504 epoch 9 - iter 120/304 - loss 0.01852826 - time (sec): 5.41 - samples/sec: 2295.89 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:03:11,872 epoch 9 - iter 150/304 - loss 0.01964515 - time (sec): 6.78 - samples/sec: 2303.83 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:03:13,206 epoch 9 - iter 180/304 - loss 0.01872359 - time (sec): 8.11 - samples/sec: 2289.97 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:03:14,518 epoch 9 - iter 210/304 - loss 0.01878046 - time (sec): 9.42 - samples/sec: 2281.06 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:03:15,880 epoch 9 - iter 240/304 - loss 0.01671311 - time (sec): 10.78 - samples/sec: 2299.79 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:03:17,237 epoch 9 - iter 270/304 - loss 0.01607859 - time (sec): 12.14 - samples/sec: 2284.21 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:03:18,552 epoch 9 - iter 300/304 - loss 0.01568710 - time (sec): 13.46 - samples/sec: 2284.74 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:03:18,727 ----------------------------------------------------------------------------------------------------
2023-10-13 09:03:18,728 EPOCH 9 done: loss 0.0156 - lr: 0.000003
2023-10-13 09:03:19,646 DEV : loss 0.20852698385715485 - f1-score (micro avg)  0.8327
2023-10-13 09:03:19,652 ----------------------------------------------------------------------------------------------------
2023-10-13 09:03:20,968 epoch 10 - iter 30/304 - loss 0.01516768 - time (sec): 1.32 - samples/sec: 2379.19 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:03:22,283 epoch 10 - iter 60/304 - loss 0.00807043 - time (sec): 2.63 - samples/sec: 2350.40 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:03:23,607 epoch 10 - iter 90/304 - loss 0.00923733 - time (sec): 3.95 - samples/sec: 2311.19 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:03:24,941 epoch 10 - iter 120/304 - loss 0.00860137 - time (sec): 5.29 - samples/sec: 2278.31 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:03:26,279 epoch 10 - iter 150/304 - loss 0.00946498 - time (sec): 6.63 - samples/sec: 2262.10 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:03:27,662 epoch 10 - iter 180/304 - loss 0.01013030 - time (sec): 8.01 - samples/sec: 2269.90 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:03:29,050 epoch 10 - iter 210/304 - loss 0.01109952 - time (sec): 9.40 - samples/sec: 2273.78 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:03:30,424 epoch 10 - iter 240/304 - loss 0.01112300 - time (sec): 10.77 - samples/sec: 2271.00 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:03:31,805 epoch 10 - iter 270/304 - loss 0.01275687 - time (sec): 12.15 - samples/sec: 2262.27 - lr: 0.000000 - momentum: 0.000000
2023-10-13 09:03:33,210 epoch 10 - iter 300/304 - loss 0.01208816 - time (sec): 13.56 - samples/sec: 2255.26 - lr: 0.000000 - momentum: 0.000000
2023-10-13 09:03:33,403 ----------------------------------------------------------------------------------------------------
2023-10-13 09:03:33,403 EPOCH 10 done: loss 0.0121 - lr: 0.000000
2023-10-13 09:03:34,323 DEV : loss 0.21789805591106415 - f1-score (micro avg)  0.826
2023-10-13 09:03:34,892 ----------------------------------------------------------------------------------------------------
2023-10-13 09:03:34,893 Loading model from best epoch ...
2023-10-13 09:03:37,263 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-date, B-date, E-date, I-date, S-object, B-object, E-object, I-object
2023-10-13 09:03:38,134 
Results:
- F-score (micro) 0.787
- F-score (macro) 0.4777
- Accuracy 0.6576

By class:
              precision    recall  f1-score   support

       scope     0.7662    0.7815    0.7738       151
        pers     0.7417    0.9271    0.8241        96
        work     0.7217    0.8737    0.7905        95
         loc     0.0000    0.0000    0.0000         3
        date     0.0000    0.0000    0.0000         3

   micro avg     0.7455    0.8333    0.7870       348
   macro avg     0.4459    0.5164    0.4777       348
weighted avg     0.7341    0.8333    0.7789       348

2023-10-13 09:03:38,135 ----------------------------------------------------------------------------------------------------