File size: 23,997 Bytes
ff1471d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
2023-10-13 09:19:43,669 ----------------------------------------------------------------------------------------------------
2023-10-13 09:19:43,670 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(32001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=25, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-13 09:19:43,670 ----------------------------------------------------------------------------------------------------
2023-10-13 09:19:43,671 MultiCorpus: 1214 train + 266 dev + 251 test sentences
- NER_HIPE_2022 Corpus: 1214 train + 266 dev + 251 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/en/with_doc_seperator
2023-10-13 09:19:43,671 ----------------------------------------------------------------------------------------------------
2023-10-13 09:19:43,671 Train: 1214 sentences
2023-10-13 09:19:43,671 (train_with_dev=False, train_with_test=False)
2023-10-13 09:19:43,671 ----------------------------------------------------------------------------------------------------
2023-10-13 09:19:43,671 Training Params:
2023-10-13 09:19:43,671 - learning_rate: "5e-05"
2023-10-13 09:19:43,671 - mini_batch_size: "8"
2023-10-13 09:19:43,671 - max_epochs: "10"
2023-10-13 09:19:43,671 - shuffle: "True"
2023-10-13 09:19:43,671 ----------------------------------------------------------------------------------------------------
2023-10-13 09:19:43,671 Plugins:
2023-10-13 09:19:43,671 - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 09:19:43,671 ----------------------------------------------------------------------------------------------------
2023-10-13 09:19:43,671 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 09:19:43,671 - metric: "('micro avg', 'f1-score')"
2023-10-13 09:19:43,671 ----------------------------------------------------------------------------------------------------
2023-10-13 09:19:43,671 Computation:
2023-10-13 09:19:43,671 - compute on device: cuda:0
2023-10-13 09:19:43,671 - embedding storage: none
2023-10-13 09:19:43,671 ----------------------------------------------------------------------------------------------------
2023-10-13 09:19:43,671 Model training base path: "hmbench-ajmc/en-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-13 09:19:43,671 ----------------------------------------------------------------------------------------------------
2023-10-13 09:19:43,671 ----------------------------------------------------------------------------------------------------
2023-10-13 09:19:44,571 epoch 1 - iter 15/152 - loss 3.38346249 - time (sec): 0.90 - samples/sec: 3419.08 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:19:45,445 epoch 1 - iter 30/152 - loss 2.97532840 - time (sec): 1.77 - samples/sec: 3566.23 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:19:46,325 epoch 1 - iter 45/152 - loss 2.30066272 - time (sec): 2.65 - samples/sec: 3550.93 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:19:47,196 epoch 1 - iter 60/152 - loss 1.93308055 - time (sec): 3.52 - samples/sec: 3483.74 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:19:48,072 epoch 1 - iter 75/152 - loss 1.68388845 - time (sec): 4.40 - samples/sec: 3525.22 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:19:48,878 epoch 1 - iter 90/152 - loss 1.51097794 - time (sec): 5.21 - samples/sec: 3539.24 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:19:49,683 epoch 1 - iter 105/152 - loss 1.35572155 - time (sec): 6.01 - samples/sec: 3554.54 - lr: 0.000034 - momentum: 0.000000
2023-10-13 09:19:50,520 epoch 1 - iter 120/152 - loss 1.23843244 - time (sec): 6.85 - samples/sec: 3563.92 - lr: 0.000039 - momentum: 0.000000
2023-10-13 09:19:51,333 epoch 1 - iter 135/152 - loss 1.13922293 - time (sec): 7.66 - samples/sec: 3570.55 - lr: 0.000044 - momentum: 0.000000
2023-10-13 09:19:52,184 epoch 1 - iter 150/152 - loss 1.05281381 - time (sec): 8.51 - samples/sec: 3593.60 - lr: 0.000049 - momentum: 0.000000
2023-10-13 09:19:52,289 ----------------------------------------------------------------------------------------------------
2023-10-13 09:19:52,289 EPOCH 1 done: loss 1.0435 - lr: 0.000049
2023-10-13 09:19:53,011 DEV : loss 0.2644125819206238 - f1-score (micro avg) 0.4632
2023-10-13 09:19:53,017 saving best model
2023-10-13 09:19:53,379 ----------------------------------------------------------------------------------------------------
2023-10-13 09:19:54,217 epoch 2 - iter 15/152 - loss 0.31275015 - time (sec): 0.84 - samples/sec: 3557.92 - lr: 0.000049 - momentum: 0.000000
2023-10-13 09:19:55,067 epoch 2 - iter 30/152 - loss 0.26855105 - time (sec): 1.69 - samples/sec: 3571.51 - lr: 0.000049 - momentum: 0.000000
2023-10-13 09:19:55,949 epoch 2 - iter 45/152 - loss 0.22728465 - time (sec): 2.57 - samples/sec: 3533.92 - lr: 0.000048 - momentum: 0.000000
2023-10-13 09:19:56,823 epoch 2 - iter 60/152 - loss 0.22107953 - time (sec): 3.44 - samples/sec: 3526.53 - lr: 0.000048 - momentum: 0.000000
2023-10-13 09:19:57,706 epoch 2 - iter 75/152 - loss 0.20765106 - time (sec): 4.32 - samples/sec: 3548.73 - lr: 0.000047 - momentum: 0.000000
2023-10-13 09:19:58,576 epoch 2 - iter 90/152 - loss 0.19761933 - time (sec): 5.19 - samples/sec: 3514.58 - lr: 0.000047 - momentum: 0.000000
2023-10-13 09:19:59,451 epoch 2 - iter 105/152 - loss 0.19040845 - time (sec): 6.07 - samples/sec: 3549.42 - lr: 0.000046 - momentum: 0.000000
2023-10-13 09:20:00,277 epoch 2 - iter 120/152 - loss 0.18038944 - time (sec): 6.90 - samples/sec: 3584.85 - lr: 0.000046 - momentum: 0.000000
2023-10-13 09:20:01,179 epoch 2 - iter 135/152 - loss 0.17918419 - time (sec): 7.80 - samples/sec: 3565.51 - lr: 0.000045 - momentum: 0.000000
2023-10-13 09:20:02,016 epoch 2 - iter 150/152 - loss 0.17422562 - time (sec): 8.63 - samples/sec: 3565.44 - lr: 0.000045 - momentum: 0.000000
2023-10-13 09:20:02,114 ----------------------------------------------------------------------------------------------------
2023-10-13 09:20:02,114 EPOCH 2 done: loss 0.1741 - lr: 0.000045
2023-10-13 09:20:03,069 DEV : loss 0.1539154350757599 - f1-score (micro avg) 0.7722
2023-10-13 09:20:03,076 saving best model
2023-10-13 09:20:03,569 ----------------------------------------------------------------------------------------------------
2023-10-13 09:20:04,426 epoch 3 - iter 15/152 - loss 0.06608612 - time (sec): 0.85 - samples/sec: 3559.99 - lr: 0.000044 - momentum: 0.000000
2023-10-13 09:20:05,293 epoch 3 - iter 30/152 - loss 0.07392310 - time (sec): 1.72 - samples/sec: 3537.93 - lr: 0.000043 - momentum: 0.000000
2023-10-13 09:20:06,137 epoch 3 - iter 45/152 - loss 0.08018555 - time (sec): 2.57 - samples/sec: 3659.77 - lr: 0.000043 - momentum: 0.000000
2023-10-13 09:20:06,958 epoch 3 - iter 60/152 - loss 0.07734541 - time (sec): 3.39 - samples/sec: 3636.50 - lr: 0.000042 - momentum: 0.000000
2023-10-13 09:20:07,830 epoch 3 - iter 75/152 - loss 0.07945579 - time (sec): 4.26 - samples/sec: 3596.63 - lr: 0.000042 - momentum: 0.000000
2023-10-13 09:20:08,808 epoch 3 - iter 90/152 - loss 0.08341963 - time (sec): 5.24 - samples/sec: 3473.18 - lr: 0.000041 - momentum: 0.000000
2023-10-13 09:20:09,650 epoch 3 - iter 105/152 - loss 0.08781815 - time (sec): 6.08 - samples/sec: 3512.66 - lr: 0.000041 - momentum: 0.000000
2023-10-13 09:20:10,500 epoch 3 - iter 120/152 - loss 0.09061035 - time (sec): 6.93 - samples/sec: 3514.87 - lr: 0.000040 - momentum: 0.000000
2023-10-13 09:20:11,382 epoch 3 - iter 135/152 - loss 0.08938512 - time (sec): 7.81 - samples/sec: 3554.72 - lr: 0.000040 - momentum: 0.000000
2023-10-13 09:20:12,194 epoch 3 - iter 150/152 - loss 0.08918940 - time (sec): 8.62 - samples/sec: 3543.13 - lr: 0.000039 - momentum: 0.000000
2023-10-13 09:20:12,304 ----------------------------------------------------------------------------------------------------
2023-10-13 09:20:12,304 EPOCH 3 done: loss 0.0887 - lr: 0.000039
2023-10-13 09:20:13,250 DEV : loss 0.14931613206863403 - f1-score (micro avg) 0.7976
2023-10-13 09:20:13,256 saving best model
2023-10-13 09:20:13,766 ----------------------------------------------------------------------------------------------------
2023-10-13 09:20:14,611 epoch 4 - iter 15/152 - loss 0.05315868 - time (sec): 0.84 - samples/sec: 3801.87 - lr: 0.000038 - momentum: 0.000000
2023-10-13 09:20:15,460 epoch 4 - iter 30/152 - loss 0.04090943 - time (sec): 1.69 - samples/sec: 3711.76 - lr: 0.000038 - momentum: 0.000000
2023-10-13 09:20:16,299 epoch 4 - iter 45/152 - loss 0.05188231 - time (sec): 2.53 - samples/sec: 3657.67 - lr: 0.000037 - momentum: 0.000000
2023-10-13 09:20:17,132 epoch 4 - iter 60/152 - loss 0.04889130 - time (sec): 3.36 - samples/sec: 3617.32 - lr: 0.000037 - momentum: 0.000000
2023-10-13 09:20:17,984 epoch 4 - iter 75/152 - loss 0.04414436 - time (sec): 4.22 - samples/sec: 3641.00 - lr: 0.000036 - momentum: 0.000000
2023-10-13 09:20:18,819 epoch 4 - iter 90/152 - loss 0.05113613 - time (sec): 5.05 - samples/sec: 3632.71 - lr: 0.000036 - momentum: 0.000000
2023-10-13 09:20:19,649 epoch 4 - iter 105/152 - loss 0.05408777 - time (sec): 5.88 - samples/sec: 3641.72 - lr: 0.000035 - momentum: 0.000000
2023-10-13 09:20:20,528 epoch 4 - iter 120/152 - loss 0.05730074 - time (sec): 6.76 - samples/sec: 3637.28 - lr: 0.000035 - momentum: 0.000000
2023-10-13 09:20:21,404 epoch 4 - iter 135/152 - loss 0.05705748 - time (sec): 7.64 - samples/sec: 3626.22 - lr: 0.000034 - momentum: 0.000000
2023-10-13 09:20:22,243 epoch 4 - iter 150/152 - loss 0.06222920 - time (sec): 8.48 - samples/sec: 3609.78 - lr: 0.000034 - momentum: 0.000000
2023-10-13 09:20:22,350 ----------------------------------------------------------------------------------------------------
2023-10-13 09:20:22,351 EPOCH 4 done: loss 0.0616 - lr: 0.000034
2023-10-13 09:20:23,305 DEV : loss 0.16867592930793762 - f1-score (micro avg) 0.8
2023-10-13 09:20:23,311 saving best model
2023-10-13 09:20:23,760 ----------------------------------------------------------------------------------------------------
2023-10-13 09:20:24,630 epoch 5 - iter 15/152 - loss 0.04383519 - time (sec): 0.87 - samples/sec: 3661.10 - lr: 0.000033 - momentum: 0.000000
2023-10-13 09:20:25,465 epoch 5 - iter 30/152 - loss 0.03552252 - time (sec): 1.70 - samples/sec: 3756.11 - lr: 0.000032 - momentum: 0.000000
2023-10-13 09:20:26,331 epoch 5 - iter 45/152 - loss 0.03538290 - time (sec): 2.57 - samples/sec: 3672.93 - lr: 0.000032 - momentum: 0.000000
2023-10-13 09:20:27,159 epoch 5 - iter 60/152 - loss 0.03921473 - time (sec): 3.40 - samples/sec: 3671.03 - lr: 0.000031 - momentum: 0.000000
2023-10-13 09:20:27,996 epoch 5 - iter 75/152 - loss 0.04800286 - time (sec): 4.23 - samples/sec: 3665.66 - lr: 0.000031 - momentum: 0.000000
2023-10-13 09:20:28,819 epoch 5 - iter 90/152 - loss 0.04586651 - time (sec): 5.06 - samples/sec: 3674.82 - lr: 0.000030 - momentum: 0.000000
2023-10-13 09:20:29,665 epoch 5 - iter 105/152 - loss 0.04281224 - time (sec): 5.90 - samples/sec: 3647.66 - lr: 0.000030 - momentum: 0.000000
2023-10-13 09:20:30,524 epoch 5 - iter 120/152 - loss 0.04804606 - time (sec): 6.76 - samples/sec: 3642.15 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:20:31,360 epoch 5 - iter 135/152 - loss 0.04923516 - time (sec): 7.60 - samples/sec: 3633.97 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:20:32,223 epoch 5 - iter 150/152 - loss 0.04699684 - time (sec): 8.46 - samples/sec: 3624.02 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:20:32,321 ----------------------------------------------------------------------------------------------------
2023-10-13 09:20:32,321 EPOCH 5 done: loss 0.0469 - lr: 0.000028
2023-10-13 09:20:33,288 DEV : loss 0.18302051723003387 - f1-score (micro avg) 0.8273
2023-10-13 09:20:33,295 saving best model
2023-10-13 09:20:33,776 ----------------------------------------------------------------------------------------------------
2023-10-13 09:20:34,584 epoch 6 - iter 15/152 - loss 0.03845158 - time (sec): 0.80 - samples/sec: 3486.72 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:20:35,479 epoch 6 - iter 30/152 - loss 0.03533511 - time (sec): 1.70 - samples/sec: 3567.43 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:20:36,340 epoch 6 - iter 45/152 - loss 0.02951617 - time (sec): 2.56 - samples/sec: 3560.03 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:20:37,227 epoch 6 - iter 60/152 - loss 0.03082758 - time (sec): 3.45 - samples/sec: 3538.12 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:20:38,020 epoch 6 - iter 75/152 - loss 0.02910731 - time (sec): 4.24 - samples/sec: 3532.66 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:20:38,862 epoch 6 - iter 90/152 - loss 0.02763532 - time (sec): 5.08 - samples/sec: 3558.85 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:20:39,703 epoch 6 - iter 105/152 - loss 0.03064225 - time (sec): 5.92 - samples/sec: 3592.20 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:20:40,560 epoch 6 - iter 120/152 - loss 0.03447101 - time (sec): 6.78 - samples/sec: 3588.74 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:20:41,371 epoch 6 - iter 135/152 - loss 0.03335287 - time (sec): 7.59 - samples/sec: 3601.34 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:20:42,205 epoch 6 - iter 150/152 - loss 0.03378038 - time (sec): 8.42 - samples/sec: 3635.78 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:20:42,306 ----------------------------------------------------------------------------------------------------
2023-10-13 09:20:42,306 EPOCH 6 done: loss 0.0337 - lr: 0.000022
2023-10-13 09:20:43,306 DEV : loss 0.19683806598186493 - f1-score (micro avg) 0.8225
2023-10-13 09:20:43,312 ----------------------------------------------------------------------------------------------------
2023-10-13 09:20:44,141 epoch 7 - iter 15/152 - loss 0.02522725 - time (sec): 0.83 - samples/sec: 3723.79 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:20:45,015 epoch 7 - iter 30/152 - loss 0.03921157 - time (sec): 1.70 - samples/sec: 3597.43 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:20:45,845 epoch 7 - iter 45/152 - loss 0.03619964 - time (sec): 2.53 - samples/sec: 3587.92 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:20:46,774 epoch 7 - iter 60/152 - loss 0.03239290 - time (sec): 3.46 - samples/sec: 3618.93 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:20:47,563 epoch 7 - iter 75/152 - loss 0.02696597 - time (sec): 4.25 - samples/sec: 3642.10 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:20:48,386 epoch 7 - iter 90/152 - loss 0.02334264 - time (sec): 5.07 - samples/sec: 3672.24 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:20:49,217 epoch 7 - iter 105/152 - loss 0.02121594 - time (sec): 5.90 - samples/sec: 3682.08 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:20:50,087 epoch 7 - iter 120/152 - loss 0.02527719 - time (sec): 6.77 - samples/sec: 3704.72 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:20:50,909 epoch 7 - iter 135/152 - loss 0.02408376 - time (sec): 7.60 - samples/sec: 3662.26 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:20:51,714 epoch 7 - iter 150/152 - loss 0.02501798 - time (sec): 8.40 - samples/sec: 3656.11 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:20:51,813 ----------------------------------------------------------------------------------------------------
2023-10-13 09:20:51,813 EPOCH 7 done: loss 0.0248 - lr: 0.000017
2023-10-13 09:20:52,754 DEV : loss 0.2068709135055542 - f1-score (micro avg) 0.832
2023-10-13 09:20:52,760 saving best model
2023-10-13 09:20:53,216 ----------------------------------------------------------------------------------------------------
2023-10-13 09:20:54,166 epoch 8 - iter 15/152 - loss 0.01936172 - time (sec): 0.94 - samples/sec: 3574.90 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:20:55,014 epoch 8 - iter 30/152 - loss 0.01290260 - time (sec): 1.79 - samples/sec: 3524.69 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:20:55,863 epoch 8 - iter 45/152 - loss 0.01342831 - time (sec): 2.64 - samples/sec: 3560.86 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:20:56,679 epoch 8 - iter 60/152 - loss 0.01444531 - time (sec): 3.46 - samples/sec: 3594.77 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:20:57,551 epoch 8 - iter 75/152 - loss 0.01668268 - time (sec): 4.33 - samples/sec: 3606.62 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:20:58,398 epoch 8 - iter 90/152 - loss 0.01422119 - time (sec): 5.17 - samples/sec: 3617.50 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:20:59,208 epoch 8 - iter 105/152 - loss 0.01675058 - time (sec): 5.98 - samples/sec: 3621.42 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:21:00,059 epoch 8 - iter 120/152 - loss 0.01847952 - time (sec): 6.84 - samples/sec: 3620.37 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:21:00,883 epoch 8 - iter 135/152 - loss 0.01717958 - time (sec): 7.66 - samples/sec: 3612.05 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:21:01,703 epoch 8 - iter 150/152 - loss 0.01791064 - time (sec): 8.48 - samples/sec: 3608.11 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:21:01,817 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:01,817 EPOCH 8 done: loss 0.0177 - lr: 0.000011
2023-10-13 09:21:02,745 DEV : loss 0.2109656035900116 - f1-score (micro avg) 0.8306
2023-10-13 09:21:02,751 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:03,538 epoch 9 - iter 15/152 - loss 0.01841773 - time (sec): 0.79 - samples/sec: 3509.23 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:21:04,394 epoch 9 - iter 30/152 - loss 0.01084808 - time (sec): 1.64 - samples/sec: 3596.70 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:21:05,255 epoch 9 - iter 45/152 - loss 0.02176395 - time (sec): 2.50 - samples/sec: 3677.56 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:21:06,129 epoch 9 - iter 60/152 - loss 0.02005315 - time (sec): 3.38 - samples/sec: 3666.53 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:21:06,975 epoch 9 - iter 75/152 - loss 0.01624306 - time (sec): 4.22 - samples/sec: 3638.12 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:21:07,784 epoch 9 - iter 90/152 - loss 0.01758859 - time (sec): 5.03 - samples/sec: 3651.28 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:21:08,603 epoch 9 - iter 105/152 - loss 0.01621420 - time (sec): 5.85 - samples/sec: 3625.49 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:21:09,476 epoch 9 - iter 120/152 - loss 0.01529610 - time (sec): 6.72 - samples/sec: 3658.47 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:21:10,314 epoch 9 - iter 135/152 - loss 0.01571513 - time (sec): 7.56 - samples/sec: 3650.17 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:21:11,165 epoch 9 - iter 150/152 - loss 0.01446427 - time (sec): 8.41 - samples/sec: 3639.36 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:21:11,268 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:11,268 EPOCH 9 done: loss 0.0143 - lr: 0.000006
2023-10-13 09:21:12,220 DEV : loss 0.20851895213127136 - f1-score (micro avg) 0.8374
2023-10-13 09:21:12,225 saving best model
2023-10-13 09:21:12,701 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:13,528 epoch 10 - iter 15/152 - loss 0.00046529 - time (sec): 0.83 - samples/sec: 3534.52 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:21:14,417 epoch 10 - iter 30/152 - loss 0.00803632 - time (sec): 1.71 - samples/sec: 3579.25 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:21:15,272 epoch 10 - iter 45/152 - loss 0.01113557 - time (sec): 2.57 - samples/sec: 3699.47 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:21:16,112 epoch 10 - iter 60/152 - loss 0.01053112 - time (sec): 3.41 - samples/sec: 3671.54 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:21:16,929 epoch 10 - iter 75/152 - loss 0.01110488 - time (sec): 4.23 - samples/sec: 3633.56 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:21:17,845 epoch 10 - iter 90/152 - loss 0.01041796 - time (sec): 5.14 - samples/sec: 3633.82 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:21:18,659 epoch 10 - iter 105/152 - loss 0.01294686 - time (sec): 5.96 - samples/sec: 3658.62 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:21:19,479 epoch 10 - iter 120/152 - loss 0.01274279 - time (sec): 6.78 - samples/sec: 3630.54 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:21:20,361 epoch 10 - iter 135/152 - loss 0.01237044 - time (sec): 7.66 - samples/sec: 3617.20 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:21:21,180 epoch 10 - iter 150/152 - loss 0.01196728 - time (sec): 8.48 - samples/sec: 3631.35 - lr: 0.000000 - momentum: 0.000000
2023-10-13 09:21:21,276 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:21,276 EPOCH 10 done: loss 0.0119 - lr: 0.000000
2023-10-13 09:21:22,220 DEV : loss 0.20164324343204498 - f1-score (micro avg) 0.8474
2023-10-13 09:21:22,226 saving best model
2023-10-13 09:21:23,038 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:23,039 Loading model from best epoch ...
2023-10-13 09:21:24,377 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-date, B-date, E-date, I-date, S-object, B-object, E-object, I-object
2023-10-13 09:21:25,207
Results:
- F-score (micro) 0.8076
- F-score (macro) 0.628
- Accuracy 0.6819
By class:
precision recall f1-score support
scope 0.7333 0.8013 0.7658 151
pers 0.8165 0.9271 0.8683 96
work 0.7818 0.9053 0.8390 95
loc 0.6667 0.6667 0.6667 3
date 0.0000 0.0000 0.0000 3
micro avg 0.7641 0.8563 0.8076 348
macro avg 0.5997 0.6601 0.6280 348
weighted avg 0.7626 0.8563 0.8066 348
2023-10-13 09:21:25,207 ----------------------------------------------------------------------------------------------------
|