File size: 25,158 Bytes
c341951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
2023-10-06 09:54:44,470 ----------------------------------------------------------------------------------------------------
2023-10-06 09:54:44,471 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): T5LayerNorm()
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-06 09:54:44,471 ----------------------------------------------------------------------------------------------------
2023-10-06 09:54:44,472 MultiCorpus: 1214 train + 266 dev + 251 test sentences
 - NER_HIPE_2022 Corpus: 1214 train + 266 dev + 251 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/ajmc/en/with_doc_seperator
2023-10-06 09:54:44,472 ----------------------------------------------------------------------------------------------------
2023-10-06 09:54:44,472 Train:  1214 sentences
2023-10-06 09:54:44,472         (train_with_dev=False, train_with_test=False)
2023-10-06 09:54:44,472 ----------------------------------------------------------------------------------------------------
2023-10-06 09:54:44,472 Training Params:
2023-10-06 09:54:44,472  - learning_rate: "0.00016" 
2023-10-06 09:54:44,472  - mini_batch_size: "4"
2023-10-06 09:54:44,472  - max_epochs: "10"
2023-10-06 09:54:44,472  - shuffle: "True"
2023-10-06 09:54:44,472 ----------------------------------------------------------------------------------------------------
2023-10-06 09:54:44,472 Plugins:
2023-10-06 09:54:44,472  - TensorboardLogger
2023-10-06 09:54:44,472  - LinearScheduler | warmup_fraction: '0.1'
2023-10-06 09:54:44,472 ----------------------------------------------------------------------------------------------------
2023-10-06 09:54:44,472 Final evaluation on model from best epoch (best-model.pt)
2023-10-06 09:54:44,472  - metric: "('micro avg', 'f1-score')"
2023-10-06 09:54:44,473 ----------------------------------------------------------------------------------------------------
2023-10-06 09:54:44,473 Computation:
2023-10-06 09:54:44,473  - compute on device: cuda:0
2023-10-06 09:54:44,473  - embedding storage: none
2023-10-06 09:54:44,473 ----------------------------------------------------------------------------------------------------
2023-10-06 09:54:44,473 Model training base path: "hmbench-ajmc/en-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-1"
2023-10-06 09:54:44,473 ----------------------------------------------------------------------------------------------------
2023-10-06 09:54:44,473 ----------------------------------------------------------------------------------------------------
2023-10-06 09:54:44,473 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-06 09:54:56,376 epoch 1 - iter 30/304 - loss 3.22742643 - time (sec): 11.90 - samples/sec: 288.60 - lr: 0.000015 - momentum: 0.000000
2023-10-06 09:55:07,887 epoch 1 - iter 60/304 - loss 3.21915042 - time (sec): 23.41 - samples/sec: 287.96 - lr: 0.000031 - momentum: 0.000000
2023-10-06 09:55:18,992 epoch 1 - iter 90/304 - loss 3.19773545 - time (sec): 34.52 - samples/sec: 282.12 - lr: 0.000047 - momentum: 0.000000
2023-10-06 09:55:30,310 epoch 1 - iter 120/304 - loss 3.13133843 - time (sec): 45.84 - samples/sec: 278.62 - lr: 0.000063 - momentum: 0.000000
2023-10-06 09:55:41,121 epoch 1 - iter 150/304 - loss 3.03631970 - time (sec): 56.65 - samples/sec: 274.31 - lr: 0.000078 - momentum: 0.000000
2023-10-06 09:55:51,674 epoch 1 - iter 180/304 - loss 2.92654304 - time (sec): 67.20 - samples/sec: 271.15 - lr: 0.000094 - momentum: 0.000000
2023-10-06 09:56:02,500 epoch 1 - iter 210/304 - loss 2.80021159 - time (sec): 78.03 - samples/sec: 270.63 - lr: 0.000110 - momentum: 0.000000
2023-10-06 09:56:13,664 epoch 1 - iter 240/304 - loss 2.66006911 - time (sec): 89.19 - samples/sec: 270.26 - lr: 0.000126 - momentum: 0.000000
2023-10-06 09:56:25,332 epoch 1 - iter 270/304 - loss 2.50546540 - time (sec): 100.86 - samples/sec: 269.65 - lr: 0.000142 - momentum: 0.000000
2023-10-06 09:56:37,599 epoch 1 - iter 300/304 - loss 2.33574461 - time (sec): 113.13 - samples/sec: 271.35 - lr: 0.000157 - momentum: 0.000000
2023-10-06 09:56:38,870 ----------------------------------------------------------------------------------------------------
2023-10-06 09:56:38,870 EPOCH 1 done: loss 2.3228 - lr: 0.000157
2023-10-06 09:56:46,110 DEV : loss 0.8970457911491394 - f1-score (micro avg)  0.0
2023-10-06 09:56:46,116 ----------------------------------------------------------------------------------------------------
2023-10-06 09:56:57,526 epoch 2 - iter 30/304 - loss 0.81144182 - time (sec): 11.41 - samples/sec: 269.45 - lr: 0.000158 - momentum: 0.000000
2023-10-06 09:57:09,002 epoch 2 - iter 60/304 - loss 0.75433976 - time (sec): 22.89 - samples/sec: 263.93 - lr: 0.000157 - momentum: 0.000000
2023-10-06 09:57:20,565 epoch 2 - iter 90/304 - loss 0.71555452 - time (sec): 34.45 - samples/sec: 263.96 - lr: 0.000155 - momentum: 0.000000
2023-10-06 09:57:32,831 epoch 2 - iter 120/304 - loss 0.66835125 - time (sec): 46.71 - samples/sec: 268.44 - lr: 0.000153 - momentum: 0.000000
2023-10-06 09:57:43,867 epoch 2 - iter 150/304 - loss 0.63094298 - time (sec): 57.75 - samples/sec: 265.47 - lr: 0.000151 - momentum: 0.000000
2023-10-06 09:57:55,696 epoch 2 - iter 180/304 - loss 0.57924068 - time (sec): 69.58 - samples/sec: 264.84 - lr: 0.000150 - momentum: 0.000000
2023-10-06 09:58:07,350 epoch 2 - iter 210/304 - loss 0.53846233 - time (sec): 81.23 - samples/sec: 262.91 - lr: 0.000148 - momentum: 0.000000
2023-10-06 09:58:19,675 epoch 2 - iter 240/304 - loss 0.51040511 - time (sec): 93.56 - samples/sec: 262.44 - lr: 0.000146 - momentum: 0.000000
2023-10-06 09:58:31,862 epoch 2 - iter 270/304 - loss 0.49514733 - time (sec): 105.74 - samples/sec: 261.92 - lr: 0.000144 - momentum: 0.000000
2023-10-06 09:58:43,426 epoch 2 - iter 300/304 - loss 0.47727700 - time (sec): 117.31 - samples/sec: 261.15 - lr: 0.000143 - momentum: 0.000000
2023-10-06 09:58:44,875 ----------------------------------------------------------------------------------------------------
2023-10-06 09:58:44,876 EPOCH 2 done: loss 0.4740 - lr: 0.000143
2023-10-06 09:58:53,032 DEV : loss 0.31851717829704285 - f1-score (micro avg)  0.4416
2023-10-06 09:58:53,040 saving best model
2023-10-06 09:58:53,870 ----------------------------------------------------------------------------------------------------
2023-10-06 09:59:06,320 epoch 3 - iter 30/304 - loss 0.26608500 - time (sec): 12.45 - samples/sec: 257.05 - lr: 0.000141 - momentum: 0.000000
2023-10-06 09:59:18,741 epoch 3 - iter 60/304 - loss 0.23335679 - time (sec): 24.87 - samples/sec: 257.38 - lr: 0.000139 - momentum: 0.000000
2023-10-06 09:59:30,077 epoch 3 - iter 90/304 - loss 0.22225252 - time (sec): 36.21 - samples/sec: 253.38 - lr: 0.000137 - momentum: 0.000000
2023-10-06 09:59:42,424 epoch 3 - iter 120/304 - loss 0.22829801 - time (sec): 48.55 - samples/sec: 256.38 - lr: 0.000135 - momentum: 0.000000
2023-10-06 09:59:53,935 epoch 3 - iter 150/304 - loss 0.22362351 - time (sec): 60.06 - samples/sec: 254.76 - lr: 0.000134 - momentum: 0.000000
2023-10-06 10:00:05,592 epoch 3 - iter 180/304 - loss 0.22215273 - time (sec): 71.72 - samples/sec: 255.33 - lr: 0.000132 - momentum: 0.000000
2023-10-06 10:00:17,824 epoch 3 - iter 210/304 - loss 0.21460363 - time (sec): 83.95 - samples/sec: 255.66 - lr: 0.000130 - momentum: 0.000000
2023-10-06 10:00:30,321 epoch 3 - iter 240/304 - loss 0.20673630 - time (sec): 96.45 - samples/sec: 256.78 - lr: 0.000128 - momentum: 0.000000
2023-10-06 10:00:41,730 epoch 3 - iter 270/304 - loss 0.20231564 - time (sec): 107.86 - samples/sec: 256.59 - lr: 0.000127 - momentum: 0.000000
2023-10-06 10:00:52,833 epoch 3 - iter 300/304 - loss 0.19777168 - time (sec): 118.96 - samples/sec: 256.91 - lr: 0.000125 - momentum: 0.000000
2023-10-06 10:00:54,278 ----------------------------------------------------------------------------------------------------
2023-10-06 10:00:54,278 EPOCH 3 done: loss 0.1959 - lr: 0.000125
2023-10-06 10:01:01,511 DEV : loss 0.18969886004924774 - f1-score (micro avg)  0.7057
2023-10-06 10:01:01,520 saving best model
2023-10-06 10:01:05,856 ----------------------------------------------------------------------------------------------------
2023-10-06 10:01:17,088 epoch 4 - iter 30/304 - loss 0.12053707 - time (sec): 11.23 - samples/sec: 270.96 - lr: 0.000123 - momentum: 0.000000
2023-10-06 10:01:28,458 epoch 4 - iter 60/304 - loss 0.13105014 - time (sec): 22.60 - samples/sec: 268.75 - lr: 0.000121 - momentum: 0.000000
2023-10-06 10:01:39,577 epoch 4 - iter 90/304 - loss 0.12897336 - time (sec): 33.72 - samples/sec: 266.85 - lr: 0.000119 - momentum: 0.000000
2023-10-06 10:01:50,991 epoch 4 - iter 120/304 - loss 0.12192808 - time (sec): 45.13 - samples/sec: 266.81 - lr: 0.000118 - momentum: 0.000000
2023-10-06 10:02:03,220 epoch 4 - iter 150/304 - loss 0.12197006 - time (sec): 57.36 - samples/sec: 271.13 - lr: 0.000116 - momentum: 0.000000
2023-10-06 10:02:14,426 epoch 4 - iter 180/304 - loss 0.11629911 - time (sec): 68.57 - samples/sec: 270.53 - lr: 0.000114 - momentum: 0.000000
2023-10-06 10:02:25,342 epoch 4 - iter 210/304 - loss 0.11116342 - time (sec): 79.48 - samples/sec: 270.01 - lr: 0.000112 - momentum: 0.000000
2023-10-06 10:02:36,770 epoch 4 - iter 240/304 - loss 0.10660005 - time (sec): 90.91 - samples/sec: 270.52 - lr: 0.000111 - momentum: 0.000000
2023-10-06 10:02:48,070 epoch 4 - iter 270/304 - loss 0.10527643 - time (sec): 102.21 - samples/sec: 269.97 - lr: 0.000109 - momentum: 0.000000
2023-10-06 10:02:59,578 epoch 4 - iter 300/304 - loss 0.10675985 - time (sec): 113.72 - samples/sec: 269.88 - lr: 0.000107 - momentum: 0.000000
2023-10-06 10:03:00,863 ----------------------------------------------------------------------------------------------------
2023-10-06 10:03:00,864 EPOCH 4 done: loss 0.1062 - lr: 0.000107
2023-10-06 10:03:08,009 DEV : loss 0.14084239304065704 - f1-score (micro avg)  0.8033
2023-10-06 10:03:08,018 saving best model
2023-10-06 10:03:12,371 ----------------------------------------------------------------------------------------------------
2023-10-06 10:03:23,771 epoch 5 - iter 30/304 - loss 0.06645253 - time (sec): 11.40 - samples/sec: 281.09 - lr: 0.000105 - momentum: 0.000000
2023-10-06 10:03:35,248 epoch 5 - iter 60/304 - loss 0.06334492 - time (sec): 22.88 - samples/sec: 274.19 - lr: 0.000103 - momentum: 0.000000
2023-10-06 10:03:46,693 epoch 5 - iter 90/304 - loss 0.07146608 - time (sec): 34.32 - samples/sec: 270.86 - lr: 0.000102 - momentum: 0.000000
2023-10-06 10:03:58,057 epoch 5 - iter 120/304 - loss 0.06442638 - time (sec): 45.68 - samples/sec: 268.61 - lr: 0.000100 - momentum: 0.000000
2023-10-06 10:04:09,037 epoch 5 - iter 150/304 - loss 0.06651026 - time (sec): 56.66 - samples/sec: 264.08 - lr: 0.000098 - momentum: 0.000000
2023-10-06 10:04:21,637 epoch 5 - iter 180/304 - loss 0.07204840 - time (sec): 69.26 - samples/sec: 266.08 - lr: 0.000096 - momentum: 0.000000
2023-10-06 10:04:32,999 epoch 5 - iter 210/304 - loss 0.07177304 - time (sec): 80.63 - samples/sec: 265.09 - lr: 0.000094 - momentum: 0.000000
2023-10-06 10:04:45,215 epoch 5 - iter 240/304 - loss 0.07011091 - time (sec): 92.84 - samples/sec: 265.16 - lr: 0.000093 - momentum: 0.000000
2023-10-06 10:04:56,839 epoch 5 - iter 270/304 - loss 0.07061563 - time (sec): 104.47 - samples/sec: 265.47 - lr: 0.000091 - momentum: 0.000000
2023-10-06 10:05:08,637 epoch 5 - iter 300/304 - loss 0.06762143 - time (sec): 116.26 - samples/sec: 264.50 - lr: 0.000089 - momentum: 0.000000
2023-10-06 10:05:09,823 ----------------------------------------------------------------------------------------------------
2023-10-06 10:05:09,823 EPOCH 5 done: loss 0.0676 - lr: 0.000089
2023-10-06 10:05:17,506 DEV : loss 0.14746029675006866 - f1-score (micro avg)  0.8037
2023-10-06 10:05:17,513 saving best model
2023-10-06 10:05:22,299 ----------------------------------------------------------------------------------------------------
2023-10-06 10:05:34,206 epoch 6 - iter 30/304 - loss 0.04698576 - time (sec): 11.90 - samples/sec: 261.58 - lr: 0.000087 - momentum: 0.000000
2023-10-06 10:05:45,667 epoch 6 - iter 60/304 - loss 0.05984385 - time (sec): 23.37 - samples/sec: 253.91 - lr: 0.000085 - momentum: 0.000000
2023-10-06 10:05:57,678 epoch 6 - iter 90/304 - loss 0.05653784 - time (sec): 35.38 - samples/sec: 257.09 - lr: 0.000084 - momentum: 0.000000
2023-10-06 10:06:09,777 epoch 6 - iter 120/304 - loss 0.04619937 - time (sec): 47.48 - samples/sec: 256.55 - lr: 0.000082 - momentum: 0.000000
2023-10-06 10:06:22,306 epoch 6 - iter 150/304 - loss 0.05426085 - time (sec): 60.01 - samples/sec: 257.01 - lr: 0.000080 - momentum: 0.000000
2023-10-06 10:06:34,087 epoch 6 - iter 180/304 - loss 0.05153527 - time (sec): 71.79 - samples/sec: 257.04 - lr: 0.000078 - momentum: 0.000000
2023-10-06 10:06:46,005 epoch 6 - iter 210/304 - loss 0.04893707 - time (sec): 83.70 - samples/sec: 255.79 - lr: 0.000077 - momentum: 0.000000
2023-10-06 10:06:57,998 epoch 6 - iter 240/304 - loss 0.05206313 - time (sec): 95.70 - samples/sec: 255.94 - lr: 0.000075 - momentum: 0.000000
2023-10-06 10:07:10,628 epoch 6 - iter 270/304 - loss 0.05177056 - time (sec): 108.33 - samples/sec: 255.76 - lr: 0.000073 - momentum: 0.000000
2023-10-06 10:07:22,152 epoch 6 - iter 300/304 - loss 0.05044602 - time (sec): 119.85 - samples/sec: 255.02 - lr: 0.000071 - momentum: 0.000000
2023-10-06 10:07:23,729 ----------------------------------------------------------------------------------------------------
2023-10-06 10:07:23,730 EPOCH 6 done: loss 0.0507 - lr: 0.000071
2023-10-06 10:07:31,724 DEV : loss 0.15308107435703278 - f1-score (micro avg)  0.8071
2023-10-06 10:07:31,733 saving best model
2023-10-06 10:07:36,056 ----------------------------------------------------------------------------------------------------
2023-10-06 10:07:47,550 epoch 7 - iter 30/304 - loss 0.04688673 - time (sec): 11.49 - samples/sec: 245.11 - lr: 0.000069 - momentum: 0.000000
2023-10-06 10:07:59,541 epoch 7 - iter 60/304 - loss 0.05174308 - time (sec): 23.48 - samples/sec: 252.60 - lr: 0.000068 - momentum: 0.000000
2023-10-06 10:08:11,552 epoch 7 - iter 90/304 - loss 0.05838398 - time (sec): 35.49 - samples/sec: 255.59 - lr: 0.000066 - momentum: 0.000000
2023-10-06 10:08:23,942 epoch 7 - iter 120/304 - loss 0.04573919 - time (sec): 47.89 - samples/sec: 258.72 - lr: 0.000064 - momentum: 0.000000
2023-10-06 10:08:36,137 epoch 7 - iter 150/304 - loss 0.04438194 - time (sec): 60.08 - samples/sec: 258.27 - lr: 0.000062 - momentum: 0.000000
2023-10-06 10:08:47,827 epoch 7 - iter 180/304 - loss 0.04129594 - time (sec): 71.77 - samples/sec: 257.35 - lr: 0.000061 - momentum: 0.000000
2023-10-06 10:08:59,370 epoch 7 - iter 210/304 - loss 0.04159775 - time (sec): 83.31 - samples/sec: 255.87 - lr: 0.000059 - momentum: 0.000000
2023-10-06 10:09:11,738 epoch 7 - iter 240/304 - loss 0.04032401 - time (sec): 95.68 - samples/sec: 255.99 - lr: 0.000057 - momentum: 0.000000
2023-10-06 10:09:23,519 epoch 7 - iter 270/304 - loss 0.04184823 - time (sec): 107.46 - samples/sec: 255.77 - lr: 0.000055 - momentum: 0.000000
2023-10-06 10:09:35,883 epoch 7 - iter 300/304 - loss 0.03910036 - time (sec): 119.83 - samples/sec: 256.10 - lr: 0.000054 - momentum: 0.000000
2023-10-06 10:09:37,347 ----------------------------------------------------------------------------------------------------
2023-10-06 10:09:37,347 EPOCH 7 done: loss 0.0400 - lr: 0.000054
2023-10-06 10:09:45,183 DEV : loss 0.15628251433372498 - f1-score (micro avg)  0.8181
2023-10-06 10:09:45,190 saving best model
2023-10-06 10:09:49,516 ----------------------------------------------------------------------------------------------------
2023-10-06 10:10:02,225 epoch 8 - iter 30/304 - loss 0.01383221 - time (sec): 12.71 - samples/sec: 262.38 - lr: 0.000052 - momentum: 0.000000
2023-10-06 10:10:14,273 epoch 8 - iter 60/304 - loss 0.02596985 - time (sec): 24.76 - samples/sec: 261.20 - lr: 0.000050 - momentum: 0.000000
2023-10-06 10:10:26,103 epoch 8 - iter 90/304 - loss 0.02185886 - time (sec): 36.59 - samples/sec: 258.16 - lr: 0.000048 - momentum: 0.000000
2023-10-06 10:10:37,817 epoch 8 - iter 120/304 - loss 0.02907262 - time (sec): 48.30 - samples/sec: 255.92 - lr: 0.000046 - momentum: 0.000000
2023-10-06 10:10:49,679 epoch 8 - iter 150/304 - loss 0.02586838 - time (sec): 60.16 - samples/sec: 255.13 - lr: 0.000045 - momentum: 0.000000
2023-10-06 10:11:02,166 epoch 8 - iter 180/304 - loss 0.03153234 - time (sec): 72.65 - samples/sec: 256.35 - lr: 0.000043 - momentum: 0.000000
2023-10-06 10:11:12,938 epoch 8 - iter 210/304 - loss 0.03238097 - time (sec): 83.42 - samples/sec: 253.75 - lr: 0.000041 - momentum: 0.000000
2023-10-06 10:11:25,085 epoch 8 - iter 240/304 - loss 0.03115189 - time (sec): 95.57 - samples/sec: 254.39 - lr: 0.000039 - momentum: 0.000000
2023-10-06 10:11:37,295 epoch 8 - iter 270/304 - loss 0.03069472 - time (sec): 107.78 - samples/sec: 254.97 - lr: 0.000038 - momentum: 0.000000
2023-10-06 10:11:49,510 epoch 8 - iter 300/304 - loss 0.03294117 - time (sec): 119.99 - samples/sec: 255.33 - lr: 0.000036 - momentum: 0.000000
2023-10-06 10:11:50,987 ----------------------------------------------------------------------------------------------------
2023-10-06 10:11:50,987 EPOCH 8 done: loss 0.0326 - lr: 0.000036
2023-10-06 10:11:58,982 DEV : loss 0.16147054731845856 - f1-score (micro avg)  0.842
2023-10-06 10:11:58,990 saving best model
2023-10-06 10:12:03,319 ----------------------------------------------------------------------------------------------------
2023-10-06 10:12:14,831 epoch 9 - iter 30/304 - loss 0.03375994 - time (sec): 11.51 - samples/sec: 265.76 - lr: 0.000034 - momentum: 0.000000
2023-10-06 10:12:26,424 epoch 9 - iter 60/304 - loss 0.03249143 - time (sec): 23.10 - samples/sec: 268.41 - lr: 0.000032 - momentum: 0.000000
2023-10-06 10:12:37,836 epoch 9 - iter 90/304 - loss 0.03227701 - time (sec): 34.51 - samples/sec: 268.12 - lr: 0.000030 - momentum: 0.000000
2023-10-06 10:12:49,318 epoch 9 - iter 120/304 - loss 0.03168926 - time (sec): 46.00 - samples/sec: 269.93 - lr: 0.000029 - momentum: 0.000000
2023-10-06 10:12:59,865 epoch 9 - iter 150/304 - loss 0.02780577 - time (sec): 56.54 - samples/sec: 267.92 - lr: 0.000027 - momentum: 0.000000
2023-10-06 10:13:11,363 epoch 9 - iter 180/304 - loss 0.02743918 - time (sec): 68.04 - samples/sec: 269.23 - lr: 0.000025 - momentum: 0.000000
2023-10-06 10:13:22,294 epoch 9 - iter 210/304 - loss 0.02537944 - time (sec): 78.97 - samples/sec: 269.91 - lr: 0.000023 - momentum: 0.000000
2023-10-06 10:13:33,769 epoch 9 - iter 240/304 - loss 0.02592961 - time (sec): 90.45 - samples/sec: 270.22 - lr: 0.000022 - momentum: 0.000000
2023-10-06 10:13:44,979 epoch 9 - iter 270/304 - loss 0.03003227 - time (sec): 101.66 - samples/sec: 270.14 - lr: 0.000020 - momentum: 0.000000
2023-10-06 10:13:56,535 epoch 9 - iter 300/304 - loss 0.02736023 - time (sec): 113.21 - samples/sec: 270.09 - lr: 0.000018 - momentum: 0.000000
2023-10-06 10:13:57,990 ----------------------------------------------------------------------------------------------------
2023-10-06 10:13:57,990 EPOCH 9 done: loss 0.0270 - lr: 0.000018
2023-10-06 10:14:05,126 DEV : loss 0.1611461490392685 - f1-score (micro avg)  0.838
2023-10-06 10:14:05,135 ----------------------------------------------------------------------------------------------------
2023-10-06 10:14:16,176 epoch 10 - iter 30/304 - loss 0.05830548 - time (sec): 11.04 - samples/sec: 263.86 - lr: 0.000016 - momentum: 0.000000
2023-10-06 10:14:26,762 epoch 10 - iter 60/304 - loss 0.03839883 - time (sec): 21.63 - samples/sec: 259.36 - lr: 0.000014 - momentum: 0.000000
2023-10-06 10:14:38,590 epoch 10 - iter 90/304 - loss 0.02785645 - time (sec): 33.45 - samples/sec: 266.82 - lr: 0.000013 - momentum: 0.000000
2023-10-06 10:14:50,176 epoch 10 - iter 120/304 - loss 0.02580621 - time (sec): 45.04 - samples/sec: 270.00 - lr: 0.000011 - momentum: 0.000000
2023-10-06 10:15:01,694 epoch 10 - iter 150/304 - loss 0.02166950 - time (sec): 56.56 - samples/sec: 269.72 - lr: 0.000009 - momentum: 0.000000
2023-10-06 10:15:13,131 epoch 10 - iter 180/304 - loss 0.02232735 - time (sec): 67.99 - samples/sec: 270.60 - lr: 0.000007 - momentum: 0.000000
2023-10-06 10:15:24,968 epoch 10 - iter 210/304 - loss 0.02484298 - time (sec): 79.83 - samples/sec: 271.22 - lr: 0.000006 - momentum: 0.000000
2023-10-06 10:15:36,078 epoch 10 - iter 240/304 - loss 0.02347145 - time (sec): 90.94 - samples/sec: 270.75 - lr: 0.000004 - momentum: 0.000000
2023-10-06 10:15:47,348 epoch 10 - iter 270/304 - loss 0.02655606 - time (sec): 102.21 - samples/sec: 270.85 - lr: 0.000002 - momentum: 0.000000
2023-10-06 10:15:58,494 epoch 10 - iter 300/304 - loss 0.02544801 - time (sec): 113.36 - samples/sec: 270.31 - lr: 0.000000 - momentum: 0.000000
2023-10-06 10:15:59,811 ----------------------------------------------------------------------------------------------------
2023-10-06 10:15:59,811 EPOCH 10 done: loss 0.0252 - lr: 0.000000
2023-10-06 10:16:07,059 DEV : loss 0.16277427971363068 - f1-score (micro avg)  0.8367
2023-10-06 10:16:07,919 ----------------------------------------------------------------------------------------------------
2023-10-06 10:16:07,921 Loading model from best epoch ...
2023-10-06 10:16:10,830 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-date, B-date, E-date, I-date, S-object, B-object, E-object, I-object
2023-10-06 10:16:17,666 
Results:
- F-score (micro) 0.7995
- F-score (macro) 0.5565
- Accuracy 0.6767

By class:
              precision    recall  f1-score   support

       scope     0.7595    0.7947    0.7767       151
        work     0.7455    0.8632    0.8000        95
        pers     0.8241    0.9271    0.8725        96
         loc     0.2222    0.6667    0.3333         3
        date     0.0000    0.0000    0.0000         3

   micro avg     0.7610    0.8420    0.7995       348
   macro avg     0.5102    0.6503    0.5565       348
weighted avg     0.7623    0.8420    0.7990       348

2023-10-06 10:16:17,666 ----------------------------------------------------------------------------------------------------