Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697585514.bce904bcef33.2482.18 +3 -0
- test.tsv +0 -0
- training.log +243 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59d02398f15dddba313c2da936c3a9a3755c0bffc4d324df393c5fb4b6921755
|
3 |
+
size 440966725
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 23:33:11 0.0000 0.5696 0.1295 0.7804 0.7858 0.7831 0.6606
|
3 |
+
2 23:34:35 0.0000 0.1282 0.1176 0.7704 0.8419 0.8046 0.6918
|
4 |
+
3 23:35:59 0.0000 0.0845 0.1246 0.8146 0.8482 0.8311 0.7361
|
5 |
+
4 23:37:24 0.0000 0.0589 0.1730 0.8111 0.8631 0.8363 0.7416
|
6 |
+
5 23:38:49 0.0000 0.0396 0.1907 0.8106 0.8603 0.8347 0.7363
|
7 |
+
6 23:40:12 0.0000 0.0276 0.2225 0.8013 0.8454 0.8227 0.7311
|
8 |
+
7 23:41:34 0.0000 0.0190 0.2077 0.8289 0.8574 0.8429 0.7481
|
9 |
+
8 23:42:58 0.0000 0.0156 0.1886 0.8531 0.8545 0.8538 0.7659
|
10 |
+
9 23:44:22 0.0000 0.0089 0.2055 0.8534 0.8637 0.8585 0.7718
|
11 |
+
10 23:45:46 0.0000 0.0064 0.2084 0.8588 0.8603 0.8595 0.7734
|
runs/events.out.tfevents.1697585514.bce904bcef33.2482.18
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:266910cf8c0080ad3c2efab822de33758e0fe16c74bc95c1f3711cf3169666cb
|
3 |
+
size 825716
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-17 23:31:54,079 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-17 23:31:54,080 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): ElectraModel(
|
5 |
+
(embeddings): ElectraEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): ElectraEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x ElectraLayer(
|
15 |
+
(attention): ElectraAttention(
|
16 |
+
(self): ElectraSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): ElectraSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): ElectraIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): ElectraOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
)
|
41 |
+
)
|
42 |
+
(locked_dropout): LockedDropout(p=0.5)
|
43 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
44 |
+
(loss_function): CrossEntropyLoss()
|
45 |
+
)"
|
46 |
+
2023-10-17 23:31:54,080 ----------------------------------------------------------------------------------------------------
|
47 |
+
2023-10-17 23:31:54,080 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
|
48 |
+
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
|
49 |
+
2023-10-17 23:31:54,080 ----------------------------------------------------------------------------------------------------
|
50 |
+
2023-10-17 23:31:54,081 Train: 5901 sentences
|
51 |
+
2023-10-17 23:31:54,081 (train_with_dev=False, train_with_test=False)
|
52 |
+
2023-10-17 23:31:54,081 ----------------------------------------------------------------------------------------------------
|
53 |
+
2023-10-17 23:31:54,081 Training Params:
|
54 |
+
2023-10-17 23:31:54,081 - learning_rate: "3e-05"
|
55 |
+
2023-10-17 23:31:54,081 - mini_batch_size: "4"
|
56 |
+
2023-10-17 23:31:54,081 - max_epochs: "10"
|
57 |
+
2023-10-17 23:31:54,081 - shuffle: "True"
|
58 |
+
2023-10-17 23:31:54,081 ----------------------------------------------------------------------------------------------------
|
59 |
+
2023-10-17 23:31:54,081 Plugins:
|
60 |
+
2023-10-17 23:31:54,081 - TensorboardLogger
|
61 |
+
2023-10-17 23:31:54,081 - LinearScheduler | warmup_fraction: '0.1'
|
62 |
+
2023-10-17 23:31:54,081 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-17 23:31:54,081 Final evaluation on model from best epoch (best-model.pt)
|
64 |
+
2023-10-17 23:31:54,081 - metric: "('micro avg', 'f1-score')"
|
65 |
+
2023-10-17 23:31:54,081 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-17 23:31:54,081 Computation:
|
67 |
+
2023-10-17 23:31:54,081 - compute on device: cuda:0
|
68 |
+
2023-10-17 23:31:54,081 - embedding storage: none
|
69 |
+
2023-10-17 23:31:54,081 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-17 23:31:54,081 Model training base path: "hmbench-hipe2020/fr-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5"
|
71 |
+
2023-10-17 23:31:54,081 ----------------------------------------------------------------------------------------------------
|
72 |
+
2023-10-17 23:31:54,081 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-17 23:31:54,081 Logging anything other than scalars to TensorBoard is currently not supported.
|
74 |
+
2023-10-17 23:32:01,352 epoch 1 - iter 147/1476 - loss 2.80100325 - time (sec): 7.27 - samples/sec: 2332.20 - lr: 0.000003 - momentum: 0.000000
|
75 |
+
2023-10-17 23:32:08,598 epoch 1 - iter 294/1476 - loss 1.73992832 - time (sec): 14.52 - samples/sec: 2355.51 - lr: 0.000006 - momentum: 0.000000
|
76 |
+
2023-10-17 23:32:16,120 epoch 1 - iter 441/1476 - loss 1.28272528 - time (sec): 22.04 - samples/sec: 2380.08 - lr: 0.000009 - momentum: 0.000000
|
77 |
+
2023-10-17 23:32:23,324 epoch 1 - iter 588/1476 - loss 1.05514826 - time (sec): 29.24 - samples/sec: 2366.74 - lr: 0.000012 - momentum: 0.000000
|
78 |
+
2023-10-17 23:32:30,350 epoch 1 - iter 735/1476 - loss 0.91050463 - time (sec): 36.27 - samples/sec: 2358.18 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-10-17 23:32:37,153 epoch 1 - iter 882/1476 - loss 0.81059549 - time (sec): 43.07 - samples/sec: 2333.54 - lr: 0.000018 - momentum: 0.000000
|
80 |
+
2023-10-17 23:32:43,975 epoch 1 - iter 1029/1476 - loss 0.73282939 - time (sec): 49.89 - samples/sec: 2321.26 - lr: 0.000021 - momentum: 0.000000
|
81 |
+
2023-10-17 23:32:51,442 epoch 1 - iter 1176/1476 - loss 0.66324521 - time (sec): 57.36 - samples/sec: 2349.23 - lr: 0.000024 - momentum: 0.000000
|
82 |
+
2023-10-17 23:32:58,230 epoch 1 - iter 1323/1476 - loss 0.61491813 - time (sec): 64.15 - samples/sec: 2335.55 - lr: 0.000027 - momentum: 0.000000
|
83 |
+
2023-10-17 23:33:05,023 epoch 1 - iter 1470/1476 - loss 0.57169143 - time (sec): 70.94 - samples/sec: 2334.46 - lr: 0.000030 - momentum: 0.000000
|
84 |
+
2023-10-17 23:33:05,308 ----------------------------------------------------------------------------------------------------
|
85 |
+
2023-10-17 23:33:05,309 EPOCH 1 done: loss 0.5696 - lr: 0.000030
|
86 |
+
2023-10-17 23:33:11,826 DEV : loss 0.1295262575149536 - f1-score (micro avg) 0.7831
|
87 |
+
2023-10-17 23:33:11,862 saving best model
|
88 |
+
2023-10-17 23:33:12,267 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-17 23:33:19,808 epoch 2 - iter 147/1476 - loss 0.14873257 - time (sec): 7.54 - samples/sec: 2259.44 - lr: 0.000030 - momentum: 0.000000
|
90 |
+
2023-10-17 23:33:27,056 epoch 2 - iter 294/1476 - loss 0.13554378 - time (sec): 14.79 - samples/sec: 2242.31 - lr: 0.000029 - momentum: 0.000000
|
91 |
+
2023-10-17 23:33:33,971 epoch 2 - iter 441/1476 - loss 0.13082620 - time (sec): 21.70 - samples/sec: 2287.60 - lr: 0.000029 - momentum: 0.000000
|
92 |
+
2023-10-17 23:33:41,017 epoch 2 - iter 588/1476 - loss 0.12999291 - time (sec): 28.75 - samples/sec: 2285.60 - lr: 0.000029 - momentum: 0.000000
|
93 |
+
2023-10-17 23:33:47,740 epoch 2 - iter 735/1476 - loss 0.13337666 - time (sec): 35.47 - samples/sec: 2280.96 - lr: 0.000028 - momentum: 0.000000
|
94 |
+
2023-10-17 23:33:54,755 epoch 2 - iter 882/1476 - loss 0.12980013 - time (sec): 42.49 - samples/sec: 2302.94 - lr: 0.000028 - momentum: 0.000000
|
95 |
+
2023-10-17 23:34:01,945 epoch 2 - iter 1029/1476 - loss 0.12828897 - time (sec): 49.68 - samples/sec: 2314.15 - lr: 0.000028 - momentum: 0.000000
|
96 |
+
2023-10-17 23:34:09,580 epoch 2 - iter 1176/1476 - loss 0.12736958 - time (sec): 57.31 - samples/sec: 2345.37 - lr: 0.000027 - momentum: 0.000000
|
97 |
+
2023-10-17 23:34:16,710 epoch 2 - iter 1323/1476 - loss 0.12756206 - time (sec): 64.44 - samples/sec: 2337.22 - lr: 0.000027 - momentum: 0.000000
|
98 |
+
2023-10-17 23:34:23,713 epoch 2 - iter 1470/1476 - loss 0.12844708 - time (sec): 71.44 - samples/sec: 2322.32 - lr: 0.000027 - momentum: 0.000000
|
99 |
+
2023-10-17 23:34:24,002 ----------------------------------------------------------------------------------------------------
|
100 |
+
2023-10-17 23:34:24,002 EPOCH 2 done: loss 0.1282 - lr: 0.000027
|
101 |
+
2023-10-17 23:34:35,709 DEV : loss 0.11762264370918274 - f1-score (micro avg) 0.8046
|
102 |
+
2023-10-17 23:34:35,743 saving best model
|
103 |
+
2023-10-17 23:34:36,184 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-17 23:34:43,287 epoch 3 - iter 147/1476 - loss 0.06016337 - time (sec): 7.10 - samples/sec: 2283.90 - lr: 0.000026 - momentum: 0.000000
|
105 |
+
2023-10-17 23:34:50,147 epoch 3 - iter 294/1476 - loss 0.06475612 - time (sec): 13.96 - samples/sec: 2305.25 - lr: 0.000026 - momentum: 0.000000
|
106 |
+
2023-10-17 23:34:57,519 epoch 3 - iter 441/1476 - loss 0.07116651 - time (sec): 21.33 - samples/sec: 2292.73 - lr: 0.000026 - momentum: 0.000000
|
107 |
+
2023-10-17 23:35:04,498 epoch 3 - iter 588/1476 - loss 0.08196817 - time (sec): 28.31 - samples/sec: 2283.52 - lr: 0.000025 - momentum: 0.000000
|
108 |
+
2023-10-17 23:35:11,873 epoch 3 - iter 735/1476 - loss 0.08093682 - time (sec): 35.69 - samples/sec: 2309.40 - lr: 0.000025 - momentum: 0.000000
|
109 |
+
2023-10-17 23:35:18,750 epoch 3 - iter 882/1476 - loss 0.08196150 - time (sec): 42.56 - samples/sec: 2308.17 - lr: 0.000025 - momentum: 0.000000
|
110 |
+
2023-10-17 23:35:26,053 epoch 3 - iter 1029/1476 - loss 0.08435209 - time (sec): 49.87 - samples/sec: 2333.52 - lr: 0.000024 - momentum: 0.000000
|
111 |
+
2023-10-17 23:35:33,011 epoch 3 - iter 1176/1476 - loss 0.08397687 - time (sec): 56.83 - samples/sec: 2329.78 - lr: 0.000024 - momentum: 0.000000
|
112 |
+
2023-10-17 23:35:40,077 epoch 3 - iter 1323/1476 - loss 0.08214585 - time (sec): 63.89 - samples/sec: 2328.49 - lr: 0.000024 - momentum: 0.000000
|
113 |
+
2023-10-17 23:35:47,311 epoch 3 - iter 1470/1476 - loss 0.08451257 - time (sec): 71.13 - samples/sec: 2332.43 - lr: 0.000023 - momentum: 0.000000
|
114 |
+
2023-10-17 23:35:47,583 ----------------------------------------------------------------------------------------------------
|
115 |
+
2023-10-17 23:35:47,583 EPOCH 3 done: loss 0.0845 - lr: 0.000023
|
116 |
+
2023-10-17 23:35:59,745 DEV : loss 0.12455519288778305 - f1-score (micro avg) 0.8311
|
117 |
+
2023-10-17 23:35:59,780 saving best model
|
118 |
+
2023-10-17 23:36:00,314 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-17 23:36:07,595 epoch 4 - iter 147/1476 - loss 0.04135825 - time (sec): 7.28 - samples/sec: 2357.87 - lr: 0.000023 - momentum: 0.000000
|
120 |
+
2023-10-17 23:36:14,807 epoch 4 - iter 294/1476 - loss 0.06168456 - time (sec): 14.49 - samples/sec: 2251.52 - lr: 0.000023 - momentum: 0.000000
|
121 |
+
2023-10-17 23:36:22,206 epoch 4 - iter 441/1476 - loss 0.06131877 - time (sec): 21.89 - samples/sec: 2331.92 - lr: 0.000022 - momentum: 0.000000
|
122 |
+
2023-10-17 23:36:29,354 epoch 4 - iter 588/1476 - loss 0.06322859 - time (sec): 29.03 - samples/sec: 2356.02 - lr: 0.000022 - momentum: 0.000000
|
123 |
+
2023-10-17 23:36:36,295 epoch 4 - iter 735/1476 - loss 0.05963841 - time (sec): 35.98 - samples/sec: 2326.66 - lr: 0.000022 - momentum: 0.000000
|
124 |
+
2023-10-17 23:36:43,129 epoch 4 - iter 882/1476 - loss 0.06022421 - time (sec): 42.81 - samples/sec: 2302.29 - lr: 0.000021 - momentum: 0.000000
|
125 |
+
2023-10-17 23:36:50,355 epoch 4 - iter 1029/1476 - loss 0.05910469 - time (sec): 50.03 - samples/sec: 2309.56 - lr: 0.000021 - momentum: 0.000000
|
126 |
+
2023-10-17 23:36:57,678 epoch 4 - iter 1176/1476 - loss 0.05977555 - time (sec): 57.36 - samples/sec: 2308.40 - lr: 0.000021 - momentum: 0.000000
|
127 |
+
2023-10-17 23:37:04,755 epoch 4 - iter 1323/1476 - loss 0.05955432 - time (sec): 64.44 - samples/sec: 2296.44 - lr: 0.000020 - momentum: 0.000000
|
128 |
+
2023-10-17 23:37:12,241 epoch 4 - iter 1470/1476 - loss 0.05887704 - time (sec): 71.92 - samples/sec: 2306.74 - lr: 0.000020 - momentum: 0.000000
|
129 |
+
2023-10-17 23:37:12,500 ----------------------------------------------------------------------------------------------------
|
130 |
+
2023-10-17 23:37:12,501 EPOCH 4 done: loss 0.0589 - lr: 0.000020
|
131 |
+
2023-10-17 23:37:24,145 DEV : loss 0.17298074066638947 - f1-score (micro avg) 0.8363
|
132 |
+
2023-10-17 23:37:24,177 saving best model
|
133 |
+
2023-10-17 23:37:24,717 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-17 23:37:32,262 epoch 5 - iter 147/1476 - loss 0.03294191 - time (sec): 7.54 - samples/sec: 2111.85 - lr: 0.000020 - momentum: 0.000000
|
135 |
+
2023-10-17 23:37:39,929 epoch 5 - iter 294/1476 - loss 0.03494477 - time (sec): 15.21 - samples/sec: 2088.58 - lr: 0.000019 - momentum: 0.000000
|
136 |
+
2023-10-17 23:37:46,973 epoch 5 - iter 441/1476 - loss 0.03478031 - time (sec): 22.25 - samples/sec: 2167.73 - lr: 0.000019 - momentum: 0.000000
|
137 |
+
2023-10-17 23:37:54,339 epoch 5 - iter 588/1476 - loss 0.03960322 - time (sec): 29.62 - samples/sec: 2201.89 - lr: 0.000019 - momentum: 0.000000
|
138 |
+
2023-10-17 23:38:01,526 epoch 5 - iter 735/1476 - loss 0.03902751 - time (sec): 36.81 - samples/sec: 2204.17 - lr: 0.000018 - momentum: 0.000000
|
139 |
+
2023-10-17 23:38:09,120 epoch 5 - iter 882/1476 - loss 0.03994877 - time (sec): 44.40 - samples/sec: 2276.31 - lr: 0.000018 - momentum: 0.000000
|
140 |
+
2023-10-17 23:38:16,476 epoch 5 - iter 1029/1476 - loss 0.03929098 - time (sec): 51.76 - samples/sec: 2292.19 - lr: 0.000018 - momentum: 0.000000
|
141 |
+
2023-10-17 23:38:23,357 epoch 5 - iter 1176/1476 - loss 0.03869095 - time (sec): 58.64 - samples/sec: 2282.48 - lr: 0.000017 - momentum: 0.000000
|
142 |
+
2023-10-17 23:38:29,950 epoch 5 - iter 1323/1476 - loss 0.03956085 - time (sec): 65.23 - samples/sec: 2267.36 - lr: 0.000017 - momentum: 0.000000
|
143 |
+
2023-10-17 23:38:37,204 epoch 5 - iter 1470/1476 - loss 0.03973073 - time (sec): 72.49 - samples/sec: 2288.84 - lr: 0.000017 - momentum: 0.000000
|
144 |
+
2023-10-17 23:38:37,481 ----------------------------------------------------------------------------------------------------
|
145 |
+
2023-10-17 23:38:37,481 EPOCH 5 done: loss 0.0396 - lr: 0.000017
|
146 |
+
2023-10-17 23:38:49,143 DEV : loss 0.19069240987300873 - f1-score (micro avg) 0.8347
|
147 |
+
2023-10-17 23:38:49,173 ----------------------------------------------------------------------------------------------------
|
148 |
+
2023-10-17 23:38:56,442 epoch 6 - iter 147/1476 - loss 0.04151410 - time (sec): 7.27 - samples/sec: 2504.19 - lr: 0.000016 - momentum: 0.000000
|
149 |
+
2023-10-17 23:39:03,567 epoch 6 - iter 294/1476 - loss 0.03128771 - time (sec): 14.39 - samples/sec: 2396.11 - lr: 0.000016 - momentum: 0.000000
|
150 |
+
2023-10-17 23:39:10,534 epoch 6 - iter 441/1476 - loss 0.02813382 - time (sec): 21.36 - samples/sec: 2348.82 - lr: 0.000016 - momentum: 0.000000
|
151 |
+
2023-10-17 23:39:18,296 epoch 6 - iter 588/1476 - loss 0.02762635 - time (sec): 29.12 - samples/sec: 2410.53 - lr: 0.000015 - momentum: 0.000000
|
152 |
+
2023-10-17 23:39:25,189 epoch 6 - iter 735/1476 - loss 0.02714453 - time (sec): 36.01 - samples/sec: 2379.21 - lr: 0.000015 - momentum: 0.000000
|
153 |
+
2023-10-17 23:39:32,347 epoch 6 - iter 882/1476 - loss 0.02908034 - time (sec): 43.17 - samples/sec: 2358.30 - lr: 0.000015 - momentum: 0.000000
|
154 |
+
2023-10-17 23:39:39,421 epoch 6 - iter 1029/1476 - loss 0.02853843 - time (sec): 50.25 - samples/sec: 2369.55 - lr: 0.000014 - momentum: 0.000000
|
155 |
+
2023-10-17 23:39:46,368 epoch 6 - iter 1176/1476 - loss 0.02820722 - time (sec): 57.19 - samples/sec: 2340.90 - lr: 0.000014 - momentum: 0.000000
|
156 |
+
2023-10-17 23:39:53,086 epoch 6 - iter 1323/1476 - loss 0.02791306 - time (sec): 63.91 - samples/sec: 2341.08 - lr: 0.000014 - momentum: 0.000000
|
157 |
+
2023-10-17 23:40:00,050 epoch 6 - iter 1470/1476 - loss 0.02765959 - time (sec): 70.88 - samples/sec: 2340.75 - lr: 0.000013 - momentum: 0.000000
|
158 |
+
2023-10-17 23:40:00,317 ----------------------------------------------------------------------------------------------------
|
159 |
+
2023-10-17 23:40:00,317 EPOCH 6 done: loss 0.0276 - lr: 0.000013
|
160 |
+
2023-10-17 23:40:12,051 DEV : loss 0.2225208729505539 - f1-score (micro avg) 0.8227
|
161 |
+
2023-10-17 23:40:12,083 ----------------------------------------------------------------------------------------------------
|
162 |
+
2023-10-17 23:40:18,908 epoch 7 - iter 147/1476 - loss 0.02536894 - time (sec): 6.82 - samples/sec: 2256.74 - lr: 0.000013 - momentum: 0.000000
|
163 |
+
2023-10-17 23:40:25,940 epoch 7 - iter 294/1476 - loss 0.01875569 - time (sec): 13.86 - samples/sec: 2297.77 - lr: 0.000013 - momentum: 0.000000
|
164 |
+
2023-10-17 23:40:32,837 epoch 7 - iter 441/1476 - loss 0.01775067 - time (sec): 20.75 - samples/sec: 2274.90 - lr: 0.000012 - momentum: 0.000000
|
165 |
+
2023-10-17 23:40:39,922 epoch 7 - iter 588/1476 - loss 0.01897025 - time (sec): 27.84 - samples/sec: 2270.43 - lr: 0.000012 - momentum: 0.000000
|
166 |
+
2023-10-17 23:40:47,381 epoch 7 - iter 735/1476 - loss 0.01918291 - time (sec): 35.30 - samples/sec: 2312.85 - lr: 0.000012 - momentum: 0.000000
|
167 |
+
2023-10-17 23:40:54,197 epoch 7 - iter 882/1476 - loss 0.01739317 - time (sec): 42.11 - samples/sec: 2292.26 - lr: 0.000011 - momentum: 0.000000
|
168 |
+
2023-10-17 23:41:01,472 epoch 7 - iter 1029/1476 - loss 0.02015101 - time (sec): 49.39 - samples/sec: 2297.01 - lr: 0.000011 - momentum: 0.000000
|
169 |
+
2023-10-17 23:41:08,793 epoch 7 - iter 1176/1476 - loss 0.01942613 - time (sec): 56.71 - samples/sec: 2311.05 - lr: 0.000011 - momentum: 0.000000
|
170 |
+
2023-10-17 23:41:15,889 epoch 7 - iter 1323/1476 - loss 0.01868802 - time (sec): 63.80 - samples/sec: 2317.14 - lr: 0.000010 - momentum: 0.000000
|
171 |
+
2023-10-17 23:41:22,978 epoch 7 - iter 1470/1476 - loss 0.01907602 - time (sec): 70.89 - samples/sec: 2336.32 - lr: 0.000010 - momentum: 0.000000
|
172 |
+
2023-10-17 23:41:23,241 ----------------------------------------------------------------------------------------------------
|
173 |
+
2023-10-17 23:41:23,242 EPOCH 7 done: loss 0.0190 - lr: 0.000010
|
174 |
+
2023-10-17 23:41:34,910 DEV : loss 0.2076645791530609 - f1-score (micro avg) 0.8429
|
175 |
+
2023-10-17 23:41:34,943 saving best model
|
176 |
+
2023-10-17 23:41:35,534 ----------------------------------------------------------------------------------------------------
|
177 |
+
2023-10-17 23:41:42,573 epoch 8 - iter 147/1476 - loss 0.00728443 - time (sec): 7.04 - samples/sec: 2313.22 - lr: 0.000010 - momentum: 0.000000
|
178 |
+
2023-10-17 23:41:49,364 epoch 8 - iter 294/1476 - loss 0.01155375 - time (sec): 13.83 - samples/sec: 2230.80 - lr: 0.000009 - momentum: 0.000000
|
179 |
+
2023-10-17 23:41:56,955 epoch 8 - iter 441/1476 - loss 0.00998468 - time (sec): 21.42 - samples/sec: 2288.60 - lr: 0.000009 - momentum: 0.000000
|
180 |
+
2023-10-17 23:42:03,926 epoch 8 - iter 588/1476 - loss 0.00978555 - time (sec): 28.39 - samples/sec: 2255.65 - lr: 0.000009 - momentum: 0.000000
|
181 |
+
2023-10-17 23:42:11,251 epoch 8 - iter 735/1476 - loss 0.01395907 - time (sec): 35.72 - samples/sec: 2310.58 - lr: 0.000008 - momentum: 0.000000
|
182 |
+
2023-10-17 23:42:18,331 epoch 8 - iter 882/1476 - loss 0.01725840 - time (sec): 42.80 - samples/sec: 2310.54 - lr: 0.000008 - momentum: 0.000000
|
183 |
+
2023-10-17 23:42:25,186 epoch 8 - iter 1029/1476 - loss 0.01674081 - time (sec): 49.65 - samples/sec: 2303.01 - lr: 0.000008 - momentum: 0.000000
|
184 |
+
2023-10-17 23:42:31,919 epoch 8 - iter 1176/1476 - loss 0.01586411 - time (sec): 56.38 - samples/sec: 2297.83 - lr: 0.000007 - momentum: 0.000000
|
185 |
+
2023-10-17 23:42:38,881 epoch 8 - iter 1323/1476 - loss 0.01535313 - time (sec): 63.35 - samples/sec: 2295.24 - lr: 0.000007 - momentum: 0.000000
|
186 |
+
2023-10-17 23:42:46,810 epoch 8 - iter 1470/1476 - loss 0.01565060 - time (sec): 71.27 - samples/sec: 2323.79 - lr: 0.000007 - momentum: 0.000000
|
187 |
+
2023-10-17 23:42:47,094 ----------------------------------------------------------------------------------------------------
|
188 |
+
2023-10-17 23:42:47,094 EPOCH 8 done: loss 0.0156 - lr: 0.000007
|
189 |
+
2023-10-17 23:42:58,817 DEV : loss 0.1886121928691864 - f1-score (micro avg) 0.8538
|
190 |
+
2023-10-17 23:42:58,852 saving best model
|
191 |
+
2023-10-17 23:42:59,442 ----------------------------------------------------------------------------------------------------
|
192 |
+
2023-10-17 23:43:06,381 epoch 9 - iter 147/1476 - loss 0.00904489 - time (sec): 6.93 - samples/sec: 2327.73 - lr: 0.000006 - momentum: 0.000000
|
193 |
+
2023-10-17 23:43:13,534 epoch 9 - iter 294/1476 - loss 0.01213344 - time (sec): 14.09 - samples/sec: 2283.24 - lr: 0.000006 - momentum: 0.000000
|
194 |
+
2023-10-17 23:43:20,577 epoch 9 - iter 441/1476 - loss 0.00968888 - time (sec): 21.13 - samples/sec: 2369.80 - lr: 0.000006 - momentum: 0.000000
|
195 |
+
2023-10-17 23:43:27,560 epoch 9 - iter 588/1476 - loss 0.00805351 - time (sec): 28.11 - samples/sec: 2342.89 - lr: 0.000005 - momentum: 0.000000
|
196 |
+
2023-10-17 23:43:34,810 epoch 9 - iter 735/1476 - loss 0.00938282 - time (sec): 35.36 - samples/sec: 2362.91 - lr: 0.000005 - momentum: 0.000000
|
197 |
+
2023-10-17 23:43:41,875 epoch 9 - iter 882/1476 - loss 0.01116852 - time (sec): 42.43 - samples/sec: 2338.20 - lr: 0.000005 - momentum: 0.000000
|
198 |
+
2023-10-17 23:43:48,777 epoch 9 - iter 1029/1476 - loss 0.01064119 - time (sec): 49.33 - samples/sec: 2324.47 - lr: 0.000004 - momentum: 0.000000
|
199 |
+
2023-10-17 23:43:56,251 epoch 9 - iter 1176/1476 - loss 0.00962622 - time (sec): 56.80 - samples/sec: 2329.48 - lr: 0.000004 - momentum: 0.000000
|
200 |
+
2023-10-17 23:44:03,238 epoch 9 - iter 1323/1476 - loss 0.00924438 - time (sec): 63.79 - samples/sec: 2329.34 - lr: 0.000004 - momentum: 0.000000
|
201 |
+
2023-10-17 23:44:10,398 epoch 9 - iter 1470/1476 - loss 0.00894017 - time (sec): 70.95 - samples/sec: 2327.45 - lr: 0.000003 - momentum: 0.000000
|
202 |
+
2023-10-17 23:44:10,806 ----------------------------------------------------------------------------------------------------
|
203 |
+
2023-10-17 23:44:10,806 EPOCH 9 done: loss 0.0089 - lr: 0.000003
|
204 |
+
2023-10-17 23:44:22,347 DEV : loss 0.20553840696811676 - f1-score (micro avg) 0.8585
|
205 |
+
2023-10-17 23:44:22,380 saving best model
|
206 |
+
2023-10-17 23:44:22,978 ----------------------------------------------------------------------------------------------------
|
207 |
+
2023-10-17 23:44:30,453 epoch 10 - iter 147/1476 - loss 0.00318820 - time (sec): 7.47 - samples/sec: 2363.28 - lr: 0.000003 - momentum: 0.000000
|
208 |
+
2023-10-17 23:44:37,552 epoch 10 - iter 294/1476 - loss 0.00833510 - time (sec): 14.57 - samples/sec: 2359.01 - lr: 0.000003 - momentum: 0.000000
|
209 |
+
2023-10-17 23:44:44,723 epoch 10 - iter 441/1476 - loss 0.00762237 - time (sec): 21.74 - samples/sec: 2327.59 - lr: 0.000002 - momentum: 0.000000
|
210 |
+
2023-10-17 23:44:52,236 epoch 10 - iter 588/1476 - loss 0.00924017 - time (sec): 29.26 - samples/sec: 2352.49 - lr: 0.000002 - momentum: 0.000000
|
211 |
+
2023-10-17 23:44:59,478 epoch 10 - iter 735/1476 - loss 0.00768338 - time (sec): 36.50 - samples/sec: 2325.80 - lr: 0.000002 - momentum: 0.000000
|
212 |
+
2023-10-17 23:45:06,600 epoch 10 - iter 882/1476 - loss 0.00673783 - time (sec): 43.62 - samples/sec: 2327.48 - lr: 0.000001 - momentum: 0.000000
|
213 |
+
2023-10-17 23:45:13,489 epoch 10 - iter 1029/1476 - loss 0.00625813 - time (sec): 50.51 - samples/sec: 2314.98 - lr: 0.000001 - momentum: 0.000000
|
214 |
+
2023-10-17 23:45:20,557 epoch 10 - iter 1176/1476 - loss 0.00604069 - time (sec): 57.58 - samples/sec: 2306.39 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-10-17 23:45:27,808 epoch 10 - iter 1323/1476 - loss 0.00615467 - time (sec): 64.83 - samples/sec: 2301.76 - lr: 0.000000 - momentum: 0.000000
|
216 |
+
2023-10-17 23:45:34,888 epoch 10 - iter 1470/1476 - loss 0.00646005 - time (sec): 71.91 - samples/sec: 2306.16 - lr: 0.000000 - momentum: 0.000000
|
217 |
+
2023-10-17 23:45:35,144 ----------------------------------------------------------------------------------------------------
|
218 |
+
2023-10-17 23:45:35,144 EPOCH 10 done: loss 0.0064 - lr: 0.000000
|
219 |
+
2023-10-17 23:45:46,863 DEV : loss 0.20840205252170563 - f1-score (micro avg) 0.8595
|
220 |
+
2023-10-17 23:45:46,900 saving best model
|
221 |
+
2023-10-17 23:45:47,919 ----------------------------------------------------------------------------------------------------
|
222 |
+
2023-10-17 23:45:47,920 Loading model from best epoch ...
|
223 |
+
2023-10-17 23:45:49,391 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
|
224 |
+
2023-10-17 23:45:56,118
|
225 |
+
Results:
|
226 |
+
- F-score (micro) 0.8122
|
227 |
+
- F-score (macro) 0.7254
|
228 |
+
- Accuracy 0.7022
|
229 |
+
|
230 |
+
By class:
|
231 |
+
precision recall f1-score support
|
232 |
+
|
233 |
+
loc 0.8730 0.8811 0.8770 858
|
234 |
+
pers 0.7660 0.8045 0.7847 537
|
235 |
+
org 0.6357 0.6212 0.6284 132
|
236 |
+
prod 0.7458 0.7213 0.7333 61
|
237 |
+
time 0.5645 0.6481 0.6034 54
|
238 |
+
|
239 |
+
micro avg 0.8030 0.8216 0.8122 1642
|
240 |
+
macro avg 0.7170 0.7353 0.7254 1642
|
241 |
+
weighted avg 0.8040 0.8216 0.8125 1642
|
242 |
+
|
243 |
+
2023-10-17 23:45:56,118 ----------------------------------------------------------------------------------------------------
|