File size: 36,908 Bytes
2ccbe2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
2023-10-25 00:11:18,614 ----------------------------------------------------------------------------------------------------
2023-10-25 00:11:18,615 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(64001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (1): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (2): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (3): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (4): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (5): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (6): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (7): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (8): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (9): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (10): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (11): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=13, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-25 00:11:18,615 ----------------------------------------------------------------------------------------------------
2023-10-25 00:11:18,615 MultiCorpus: 5777 train + 722 dev + 723 test sentences
 - NER_ICDAR_EUROPEANA Corpus: 5777 train + 722 dev + 723 test sentences - /home/ubuntu/.flair/datasets/ner_icdar_europeana/nl
2023-10-25 00:11:18,615 ----------------------------------------------------------------------------------------------------
2023-10-25 00:11:18,616 Train:  5777 sentences
2023-10-25 00:11:18,616         (train_with_dev=False, train_with_test=False)
2023-10-25 00:11:18,616 ----------------------------------------------------------------------------------------------------
2023-10-25 00:11:18,616 Training Params:
2023-10-25 00:11:18,616  - learning_rate: "3e-05" 
2023-10-25 00:11:18,616  - mini_batch_size: "4"
2023-10-25 00:11:18,616  - max_epochs: "10"
2023-10-25 00:11:18,616  - shuffle: "True"
2023-10-25 00:11:18,616 ----------------------------------------------------------------------------------------------------
2023-10-25 00:11:18,616 Plugins:
2023-10-25 00:11:18,616  - TensorboardLogger
2023-10-25 00:11:18,616  - LinearScheduler | warmup_fraction: '0.1'
2023-10-25 00:11:18,616 ----------------------------------------------------------------------------------------------------
2023-10-25 00:11:18,616 Final evaluation on model from best epoch (best-model.pt)
2023-10-25 00:11:18,616  - metric: "('micro avg', 'f1-score')"
2023-10-25 00:11:18,616 ----------------------------------------------------------------------------------------------------
2023-10-25 00:11:18,616 Computation:
2023-10-25 00:11:18,616  - compute on device: cuda:0
2023-10-25 00:11:18,616  - embedding storage: none
2023-10-25 00:11:18,616 ----------------------------------------------------------------------------------------------------
2023-10-25 00:11:18,616 Model training base path: "hmbench-icdar/nl-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-25 00:11:18,616 ----------------------------------------------------------------------------------------------------
2023-10-25 00:11:18,616 ----------------------------------------------------------------------------------------------------
2023-10-25 00:11:18,616 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-25 00:11:29,321 epoch 1 - iter 144/1445 - loss 1.38938163 - time (sec): 10.70 - samples/sec: 1720.98 - lr: 0.000003 - momentum: 0.000000
2023-10-25 00:11:39,360 epoch 1 - iter 288/1445 - loss 0.87654160 - time (sec): 20.74 - samples/sec: 1667.66 - lr: 0.000006 - momentum: 0.000000
2023-10-25 00:11:49,875 epoch 1 - iter 432/1445 - loss 0.65410083 - time (sec): 31.26 - samples/sec: 1658.76 - lr: 0.000009 - momentum: 0.000000
2023-10-25 00:12:00,072 epoch 1 - iter 576/1445 - loss 0.53644177 - time (sec): 41.45 - samples/sec: 1661.93 - lr: 0.000012 - momentum: 0.000000
2023-10-25 00:12:11,122 epoch 1 - iter 720/1445 - loss 0.45401570 - time (sec): 52.51 - samples/sec: 1670.87 - lr: 0.000015 - momentum: 0.000000
2023-10-25 00:12:21,401 epoch 1 - iter 864/1445 - loss 0.40781351 - time (sec): 62.78 - samples/sec: 1664.14 - lr: 0.000018 - momentum: 0.000000
2023-10-25 00:12:32,044 epoch 1 - iter 1008/1445 - loss 0.36577446 - time (sec): 73.43 - samples/sec: 1667.51 - lr: 0.000021 - momentum: 0.000000
2023-10-25 00:12:42,531 epoch 1 - iter 1152/1445 - loss 0.33817906 - time (sec): 83.91 - samples/sec: 1670.17 - lr: 0.000024 - momentum: 0.000000
2023-10-25 00:12:53,139 epoch 1 - iter 1296/1445 - loss 0.31541819 - time (sec): 94.52 - samples/sec: 1670.96 - lr: 0.000027 - momentum: 0.000000
2023-10-25 00:13:03,644 epoch 1 - iter 1440/1445 - loss 0.29840554 - time (sec): 105.03 - samples/sec: 1671.49 - lr: 0.000030 - momentum: 0.000000
2023-10-25 00:13:04,067 ----------------------------------------------------------------------------------------------------
2023-10-25 00:13:04,067 EPOCH 1 done: loss 0.2976 - lr: 0.000030
2023-10-25 00:13:07,349 DEV : loss 0.13481558859348297 - f1-score (micro avg)  0.5007
2023-10-25 00:13:07,360 saving best model
2023-10-25 00:13:07,833 ----------------------------------------------------------------------------------------------------
2023-10-25 00:13:18,284 epoch 2 - iter 144/1445 - loss 0.11213883 - time (sec): 10.45 - samples/sec: 1656.80 - lr: 0.000030 - momentum: 0.000000
2023-10-25 00:13:29,023 epoch 2 - iter 288/1445 - loss 0.12245620 - time (sec): 21.19 - samples/sec: 1687.57 - lr: 0.000029 - momentum: 0.000000
2023-10-25 00:13:39,836 epoch 2 - iter 432/1445 - loss 0.11723412 - time (sec): 32.00 - samples/sec: 1687.73 - lr: 0.000029 - momentum: 0.000000
2023-10-25 00:13:50,678 epoch 2 - iter 576/1445 - loss 0.11064019 - time (sec): 42.84 - samples/sec: 1685.23 - lr: 0.000029 - momentum: 0.000000
2023-10-25 00:14:01,208 epoch 2 - iter 720/1445 - loss 0.10928472 - time (sec): 53.37 - samples/sec: 1672.93 - lr: 0.000028 - momentum: 0.000000
2023-10-25 00:14:11,856 epoch 2 - iter 864/1445 - loss 0.10679391 - time (sec): 64.02 - samples/sec: 1678.60 - lr: 0.000028 - momentum: 0.000000
2023-10-25 00:14:22,186 epoch 2 - iter 1008/1445 - loss 0.10555065 - time (sec): 74.35 - samples/sec: 1666.89 - lr: 0.000028 - momentum: 0.000000
2023-10-25 00:14:32,456 epoch 2 - iter 1152/1445 - loss 0.10376908 - time (sec): 84.62 - samples/sec: 1666.77 - lr: 0.000027 - momentum: 0.000000
2023-10-25 00:14:42,859 epoch 2 - iter 1296/1445 - loss 0.10361640 - time (sec): 95.03 - samples/sec: 1664.12 - lr: 0.000027 - momentum: 0.000000
2023-10-25 00:14:53,345 epoch 2 - iter 1440/1445 - loss 0.10081503 - time (sec): 105.51 - samples/sec: 1664.11 - lr: 0.000027 - momentum: 0.000000
2023-10-25 00:14:53,797 ----------------------------------------------------------------------------------------------------
2023-10-25 00:14:53,798 EPOCH 2 done: loss 0.1006 - lr: 0.000027
2023-10-25 00:14:57,509 DEV : loss 0.09922739118337631 - f1-score (micro avg)  0.7789
2023-10-25 00:14:57,521 saving best model
2023-10-25 00:14:58,112 ----------------------------------------------------------------------------------------------------
2023-10-25 00:15:08,688 epoch 3 - iter 144/1445 - loss 0.07401386 - time (sec): 10.58 - samples/sec: 1626.38 - lr: 0.000026 - momentum: 0.000000
2023-10-25 00:15:19,237 epoch 3 - iter 288/1445 - loss 0.07036989 - time (sec): 21.12 - samples/sec: 1663.55 - lr: 0.000026 - momentum: 0.000000
2023-10-25 00:15:29,743 epoch 3 - iter 432/1445 - loss 0.07228507 - time (sec): 31.63 - samples/sec: 1660.81 - lr: 0.000026 - momentum: 0.000000
2023-10-25 00:15:40,193 epoch 3 - iter 576/1445 - loss 0.06975233 - time (sec): 42.08 - samples/sec: 1661.84 - lr: 0.000025 - momentum: 0.000000
2023-10-25 00:15:50,838 epoch 3 - iter 720/1445 - loss 0.07320523 - time (sec): 52.72 - samples/sec: 1659.56 - lr: 0.000025 - momentum: 0.000000
2023-10-25 00:16:01,293 epoch 3 - iter 864/1445 - loss 0.07136932 - time (sec): 63.18 - samples/sec: 1654.97 - lr: 0.000025 - momentum: 0.000000
2023-10-25 00:16:11,569 epoch 3 - iter 1008/1445 - loss 0.07073740 - time (sec): 73.46 - samples/sec: 1657.77 - lr: 0.000024 - momentum: 0.000000
2023-10-25 00:16:22,487 epoch 3 - iter 1152/1445 - loss 0.06940519 - time (sec): 84.37 - samples/sec: 1667.92 - lr: 0.000024 - momentum: 0.000000
2023-10-25 00:16:33,200 epoch 3 - iter 1296/1445 - loss 0.06930457 - time (sec): 95.09 - samples/sec: 1665.11 - lr: 0.000024 - momentum: 0.000000
2023-10-25 00:16:43,676 epoch 3 - iter 1440/1445 - loss 0.06923652 - time (sec): 105.56 - samples/sec: 1664.57 - lr: 0.000023 - momentum: 0.000000
2023-10-25 00:16:44,021 ----------------------------------------------------------------------------------------------------
2023-10-25 00:16:44,021 EPOCH 3 done: loss 0.0692 - lr: 0.000023
2023-10-25 00:16:47,446 DEV : loss 0.13537803292274475 - f1-score (micro avg)  0.7799
2023-10-25 00:16:47,458 saving best model
2023-10-25 00:16:48,053 ----------------------------------------------------------------------------------------------------
2023-10-25 00:16:58,764 epoch 4 - iter 144/1445 - loss 0.05989448 - time (sec): 10.71 - samples/sec: 1663.20 - lr: 0.000023 - momentum: 0.000000
2023-10-25 00:17:09,630 epoch 4 - iter 288/1445 - loss 0.05059786 - time (sec): 21.58 - samples/sec: 1620.12 - lr: 0.000023 - momentum: 0.000000
2023-10-25 00:17:20,376 epoch 4 - iter 432/1445 - loss 0.04777464 - time (sec): 32.32 - samples/sec: 1653.35 - lr: 0.000022 - momentum: 0.000000
2023-10-25 00:17:31,029 epoch 4 - iter 576/1445 - loss 0.04689286 - time (sec): 42.98 - samples/sec: 1668.10 - lr: 0.000022 - momentum: 0.000000
2023-10-25 00:17:41,011 epoch 4 - iter 720/1445 - loss 0.04834085 - time (sec): 52.96 - samples/sec: 1655.32 - lr: 0.000022 - momentum: 0.000000
2023-10-25 00:17:51,641 epoch 4 - iter 864/1445 - loss 0.04645510 - time (sec): 63.59 - samples/sec: 1654.41 - lr: 0.000021 - momentum: 0.000000
2023-10-25 00:18:02,147 epoch 4 - iter 1008/1445 - loss 0.04662996 - time (sec): 74.09 - samples/sec: 1654.67 - lr: 0.000021 - momentum: 0.000000
2023-10-25 00:18:12,811 epoch 4 - iter 1152/1445 - loss 0.04833320 - time (sec): 84.76 - samples/sec: 1657.00 - lr: 0.000021 - momentum: 0.000000
2023-10-25 00:18:23,313 epoch 4 - iter 1296/1445 - loss 0.04773193 - time (sec): 95.26 - samples/sec: 1661.15 - lr: 0.000020 - momentum: 0.000000
2023-10-25 00:18:33,848 epoch 4 - iter 1440/1445 - loss 0.04746787 - time (sec): 105.79 - samples/sec: 1661.63 - lr: 0.000020 - momentum: 0.000000
2023-10-25 00:18:34,192 ----------------------------------------------------------------------------------------------------
2023-10-25 00:18:34,192 EPOCH 4 done: loss 0.0475 - lr: 0.000020
2023-10-25 00:18:37,622 DEV : loss 0.12032151222229004 - f1-score (micro avg)  0.8011
2023-10-25 00:18:37,634 saving best model
2023-10-25 00:18:38,207 ----------------------------------------------------------------------------------------------------
2023-10-25 00:18:48,599 epoch 5 - iter 144/1445 - loss 0.02983013 - time (sec): 10.39 - samples/sec: 1631.93 - lr: 0.000020 - momentum: 0.000000
2023-10-25 00:18:58,968 epoch 5 - iter 288/1445 - loss 0.02899526 - time (sec): 20.76 - samples/sec: 1639.27 - lr: 0.000019 - momentum: 0.000000
2023-10-25 00:19:09,760 epoch 5 - iter 432/1445 - loss 0.03130541 - time (sec): 31.55 - samples/sec: 1659.53 - lr: 0.000019 - momentum: 0.000000
2023-10-25 00:19:20,186 epoch 5 - iter 576/1445 - loss 0.03109030 - time (sec): 41.98 - samples/sec: 1650.29 - lr: 0.000019 - momentum: 0.000000
2023-10-25 00:19:30,854 epoch 5 - iter 720/1445 - loss 0.03453446 - time (sec): 52.65 - samples/sec: 1651.54 - lr: 0.000018 - momentum: 0.000000
2023-10-25 00:19:41,861 epoch 5 - iter 864/1445 - loss 0.03446052 - time (sec): 63.65 - samples/sec: 1662.69 - lr: 0.000018 - momentum: 0.000000
2023-10-25 00:19:52,258 epoch 5 - iter 1008/1445 - loss 0.03609405 - time (sec): 74.05 - samples/sec: 1661.99 - lr: 0.000018 - momentum: 0.000000
2023-10-25 00:20:02,565 epoch 5 - iter 1152/1445 - loss 0.03627626 - time (sec): 84.36 - samples/sec: 1661.97 - lr: 0.000017 - momentum: 0.000000
2023-10-25 00:20:13,190 epoch 5 - iter 1296/1445 - loss 0.03556309 - time (sec): 94.98 - samples/sec: 1666.39 - lr: 0.000017 - momentum: 0.000000
2023-10-25 00:20:23,734 epoch 5 - iter 1440/1445 - loss 0.03679685 - time (sec): 105.53 - samples/sec: 1665.75 - lr: 0.000017 - momentum: 0.000000
2023-10-25 00:20:24,070 ----------------------------------------------------------------------------------------------------
2023-10-25 00:20:24,070 EPOCH 5 done: loss 0.0368 - lr: 0.000017
2023-10-25 00:20:27,795 DEV : loss 0.1298297941684723 - f1-score (micro avg)  0.8238
2023-10-25 00:20:27,807 saving best model
2023-10-25 00:20:28,405 ----------------------------------------------------------------------------------------------------
2023-10-25 00:20:39,126 epoch 6 - iter 144/1445 - loss 0.01601013 - time (sec): 10.72 - samples/sec: 1683.95 - lr: 0.000016 - momentum: 0.000000
2023-10-25 00:20:49,460 epoch 6 - iter 288/1445 - loss 0.02373592 - time (sec): 21.05 - samples/sec: 1666.69 - lr: 0.000016 - momentum: 0.000000
2023-10-25 00:20:59,889 epoch 6 - iter 432/1445 - loss 0.02608343 - time (sec): 31.48 - samples/sec: 1673.09 - lr: 0.000016 - momentum: 0.000000
2023-10-25 00:21:10,404 epoch 6 - iter 576/1445 - loss 0.02606470 - time (sec): 42.00 - samples/sec: 1670.48 - lr: 0.000015 - momentum: 0.000000
2023-10-25 00:21:21,085 epoch 6 - iter 720/1445 - loss 0.02539757 - time (sec): 52.68 - samples/sec: 1672.76 - lr: 0.000015 - momentum: 0.000000
2023-10-25 00:21:31,532 epoch 6 - iter 864/1445 - loss 0.02480823 - time (sec): 63.13 - samples/sec: 1668.80 - lr: 0.000015 - momentum: 0.000000
2023-10-25 00:21:41,901 epoch 6 - iter 1008/1445 - loss 0.02490080 - time (sec): 73.50 - samples/sec: 1665.35 - lr: 0.000014 - momentum: 0.000000
2023-10-25 00:21:52,431 epoch 6 - iter 1152/1445 - loss 0.02503213 - time (sec): 84.03 - samples/sec: 1667.30 - lr: 0.000014 - momentum: 0.000000
2023-10-25 00:22:03,316 epoch 6 - iter 1296/1445 - loss 0.02496600 - time (sec): 94.91 - samples/sec: 1676.20 - lr: 0.000014 - momentum: 0.000000
2023-10-25 00:22:13,716 epoch 6 - iter 1440/1445 - loss 0.02479026 - time (sec): 105.31 - samples/sec: 1669.96 - lr: 0.000013 - momentum: 0.000000
2023-10-25 00:22:14,016 ----------------------------------------------------------------------------------------------------
2023-10-25 00:22:14,017 EPOCH 6 done: loss 0.0249 - lr: 0.000013
2023-10-25 00:22:17,443 DEV : loss 0.20431096851825714 - f1-score (micro avg)  0.7895
2023-10-25 00:22:17,455 ----------------------------------------------------------------------------------------------------
2023-10-25 00:22:27,950 epoch 7 - iter 144/1445 - loss 0.01117684 - time (sec): 10.49 - samples/sec: 1663.75 - lr: 0.000013 - momentum: 0.000000
2023-10-25 00:22:38,150 epoch 7 - iter 288/1445 - loss 0.01571047 - time (sec): 20.69 - samples/sec: 1639.81 - lr: 0.000013 - momentum: 0.000000
2023-10-25 00:22:49,582 epoch 7 - iter 432/1445 - loss 0.01656906 - time (sec): 32.13 - samples/sec: 1676.46 - lr: 0.000012 - momentum: 0.000000
2023-10-25 00:23:00,018 epoch 7 - iter 576/1445 - loss 0.01503815 - time (sec): 42.56 - samples/sec: 1673.14 - lr: 0.000012 - momentum: 0.000000
2023-10-25 00:23:10,915 epoch 7 - iter 720/1445 - loss 0.01601736 - time (sec): 53.46 - samples/sec: 1671.50 - lr: 0.000012 - momentum: 0.000000
2023-10-25 00:23:21,092 epoch 7 - iter 864/1445 - loss 0.01576845 - time (sec): 63.64 - samples/sec: 1663.45 - lr: 0.000011 - momentum: 0.000000
2023-10-25 00:23:32,263 epoch 7 - iter 1008/1445 - loss 0.01739489 - time (sec): 74.81 - samples/sec: 1669.40 - lr: 0.000011 - momentum: 0.000000
2023-10-25 00:23:42,513 epoch 7 - iter 1152/1445 - loss 0.01767123 - time (sec): 85.06 - samples/sec: 1657.92 - lr: 0.000011 - momentum: 0.000000
2023-10-25 00:23:53,120 epoch 7 - iter 1296/1445 - loss 0.01754927 - time (sec): 95.66 - samples/sec: 1658.01 - lr: 0.000010 - momentum: 0.000000
2023-10-25 00:24:03,214 epoch 7 - iter 1440/1445 - loss 0.01693935 - time (sec): 105.76 - samples/sec: 1661.54 - lr: 0.000010 - momentum: 0.000000
2023-10-25 00:24:03,537 ----------------------------------------------------------------------------------------------------
2023-10-25 00:24:03,538 EPOCH 7 done: loss 0.0169 - lr: 0.000010
2023-10-25 00:24:06,979 DEV : loss 0.18424199521541595 - f1-score (micro avg)  0.8119
2023-10-25 00:24:06,991 ----------------------------------------------------------------------------------------------------
2023-10-25 00:24:17,311 epoch 8 - iter 144/1445 - loss 0.00930858 - time (sec): 10.32 - samples/sec: 1632.76 - lr: 0.000010 - momentum: 0.000000
2023-10-25 00:24:27,987 epoch 8 - iter 288/1445 - loss 0.01249980 - time (sec): 21.00 - samples/sec: 1632.85 - lr: 0.000009 - momentum: 0.000000
2023-10-25 00:24:38,238 epoch 8 - iter 432/1445 - loss 0.01219123 - time (sec): 31.25 - samples/sec: 1619.39 - lr: 0.000009 - momentum: 0.000000
2023-10-25 00:24:49,551 epoch 8 - iter 576/1445 - loss 0.01174793 - time (sec): 42.56 - samples/sec: 1649.32 - lr: 0.000009 - momentum: 0.000000
2023-10-25 00:24:59,973 epoch 8 - iter 720/1445 - loss 0.01162494 - time (sec): 52.98 - samples/sec: 1654.59 - lr: 0.000008 - momentum: 0.000000
2023-10-25 00:25:10,506 epoch 8 - iter 864/1445 - loss 0.01127335 - time (sec): 63.51 - samples/sec: 1656.66 - lr: 0.000008 - momentum: 0.000000
2023-10-25 00:25:21,054 epoch 8 - iter 1008/1445 - loss 0.01257425 - time (sec): 74.06 - samples/sec: 1661.14 - lr: 0.000008 - momentum: 0.000000
2023-10-25 00:25:31,601 epoch 8 - iter 1152/1445 - loss 0.01352298 - time (sec): 84.61 - samples/sec: 1660.77 - lr: 0.000007 - momentum: 0.000000
2023-10-25 00:25:41,995 epoch 8 - iter 1296/1445 - loss 0.01297552 - time (sec): 95.00 - samples/sec: 1660.40 - lr: 0.000007 - momentum: 0.000000
2023-10-25 00:25:52,563 epoch 8 - iter 1440/1445 - loss 0.01308558 - time (sec): 105.57 - samples/sec: 1664.94 - lr: 0.000007 - momentum: 0.000000
2023-10-25 00:25:52,893 ----------------------------------------------------------------------------------------------------
2023-10-25 00:25:52,894 EPOCH 8 done: loss 0.0132 - lr: 0.000007
2023-10-25 00:25:56,623 DEV : loss 0.18342554569244385 - f1-score (micro avg)  0.8154
2023-10-25 00:25:56,635 ----------------------------------------------------------------------------------------------------
2023-10-25 00:26:07,274 epoch 9 - iter 144/1445 - loss 0.00487700 - time (sec): 10.64 - samples/sec: 1686.80 - lr: 0.000006 - momentum: 0.000000
2023-10-25 00:26:17,719 epoch 9 - iter 288/1445 - loss 0.00618271 - time (sec): 21.08 - samples/sec: 1674.65 - lr: 0.000006 - momentum: 0.000000
2023-10-25 00:26:28,409 epoch 9 - iter 432/1445 - loss 0.00694467 - time (sec): 31.77 - samples/sec: 1668.72 - lr: 0.000006 - momentum: 0.000000
2023-10-25 00:26:39,233 epoch 9 - iter 576/1445 - loss 0.00703293 - time (sec): 42.60 - samples/sec: 1679.56 - lr: 0.000005 - momentum: 0.000000
2023-10-25 00:26:49,652 epoch 9 - iter 720/1445 - loss 0.00748005 - time (sec): 53.02 - samples/sec: 1667.43 - lr: 0.000005 - momentum: 0.000000
2023-10-25 00:27:00,096 epoch 9 - iter 864/1445 - loss 0.00812538 - time (sec): 63.46 - samples/sec: 1660.54 - lr: 0.000005 - momentum: 0.000000
2023-10-25 00:27:10,612 epoch 9 - iter 1008/1445 - loss 0.00850011 - time (sec): 73.98 - samples/sec: 1664.19 - lr: 0.000004 - momentum: 0.000000
2023-10-25 00:27:21,467 epoch 9 - iter 1152/1445 - loss 0.00876078 - time (sec): 84.83 - samples/sec: 1669.13 - lr: 0.000004 - momentum: 0.000000
2023-10-25 00:27:31,749 epoch 9 - iter 1296/1445 - loss 0.00983545 - time (sec): 95.11 - samples/sec: 1664.29 - lr: 0.000004 - momentum: 0.000000
2023-10-25 00:27:42,233 epoch 9 - iter 1440/1445 - loss 0.00953351 - time (sec): 105.60 - samples/sec: 1663.77 - lr: 0.000003 - momentum: 0.000000
2023-10-25 00:27:42,560 ----------------------------------------------------------------------------------------------------
2023-10-25 00:27:42,560 EPOCH 9 done: loss 0.0097 - lr: 0.000003
2023-10-25 00:27:45,993 DEV : loss 0.18781644105911255 - f1-score (micro avg)  0.823
2023-10-25 00:27:46,005 ----------------------------------------------------------------------------------------------------
2023-10-25 00:27:56,502 epoch 10 - iter 144/1445 - loss 0.00437476 - time (sec): 10.50 - samples/sec: 1646.85 - lr: 0.000003 - momentum: 0.000000
2023-10-25 00:28:07,554 epoch 10 - iter 288/1445 - loss 0.00845703 - time (sec): 21.55 - samples/sec: 1620.52 - lr: 0.000003 - momentum: 0.000000
2023-10-25 00:28:17,904 epoch 10 - iter 432/1445 - loss 0.00618837 - time (sec): 31.90 - samples/sec: 1633.18 - lr: 0.000002 - momentum: 0.000000
2023-10-25 00:28:28,473 epoch 10 - iter 576/1445 - loss 0.00597168 - time (sec): 42.47 - samples/sec: 1649.52 - lr: 0.000002 - momentum: 0.000000
2023-10-25 00:28:38,916 epoch 10 - iter 720/1445 - loss 0.00539134 - time (sec): 52.91 - samples/sec: 1651.52 - lr: 0.000002 - momentum: 0.000000
2023-10-25 00:28:50,172 epoch 10 - iter 864/1445 - loss 0.00625082 - time (sec): 64.17 - samples/sec: 1667.60 - lr: 0.000001 - momentum: 0.000000
2023-10-25 00:29:00,734 epoch 10 - iter 1008/1445 - loss 0.00634905 - time (sec): 74.73 - samples/sec: 1667.31 - lr: 0.000001 - momentum: 0.000000
2023-10-25 00:29:11,282 epoch 10 - iter 1152/1445 - loss 0.00643576 - time (sec): 85.28 - samples/sec: 1669.39 - lr: 0.000001 - momentum: 0.000000
2023-10-25 00:29:21,407 epoch 10 - iter 1296/1445 - loss 0.00623537 - time (sec): 95.40 - samples/sec: 1662.12 - lr: 0.000000 - momentum: 0.000000
2023-10-25 00:29:31,911 epoch 10 - iter 1440/1445 - loss 0.00626251 - time (sec): 105.90 - samples/sec: 1660.30 - lr: 0.000000 - momentum: 0.000000
2023-10-25 00:29:32,215 ----------------------------------------------------------------------------------------------------
2023-10-25 00:29:32,216 EPOCH 10 done: loss 0.0063 - lr: 0.000000
2023-10-25 00:29:35,646 DEV : loss 0.19258512556552887 - f1-score (micro avg)  0.8221
2023-10-25 00:29:36,125 ----------------------------------------------------------------------------------------------------
2023-10-25 00:29:36,126 Loading model from best epoch ...
2023-10-25 00:29:37,790 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG
2023-10-25 00:29:41,330 
Results:
- F-score (micro) 0.7947
- F-score (macro) 0.6981
- Accuracy 0.6764

By class:
              precision    recall  f1-score   support

         PER     0.7939    0.8071    0.8004       482
         LOC     0.8662    0.8057    0.8348       458
         ORG     0.5283    0.4058    0.4590        69

   micro avg     0.8111    0.7790    0.7947      1009
   macro avg     0.7295    0.6728    0.6981      1009
weighted avg     0.8085    0.7790    0.7927      1009

2023-10-25 00:29:41,330 ----------------------------------------------------------------------------------------------------