File size: 36,906 Bytes
845cf65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
2023-10-25 02:46:56,140 ----------------------------------------------------------------------------------------------------
2023-10-25 02:46:56,141 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(64001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(1): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(2): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(3): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(4): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(5): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(6): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(7): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(8): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(9): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(10): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(11): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=13, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-25 02:46:56,141 ----------------------------------------------------------------------------------------------------
2023-10-25 02:46:56,141 MultiCorpus: 5777 train + 722 dev + 723 test sentences
- NER_ICDAR_EUROPEANA Corpus: 5777 train + 722 dev + 723 test sentences - /home/ubuntu/.flair/datasets/ner_icdar_europeana/nl
2023-10-25 02:46:56,141 ----------------------------------------------------------------------------------------------------
2023-10-25 02:46:56,141 Train: 5777 sentences
2023-10-25 02:46:56,141 (train_with_dev=False, train_with_test=False)
2023-10-25 02:46:56,141 ----------------------------------------------------------------------------------------------------
2023-10-25 02:46:56,141 Training Params:
2023-10-25 02:46:56,141 - learning_rate: "5e-05"
2023-10-25 02:46:56,141 - mini_batch_size: "4"
2023-10-25 02:46:56,141 - max_epochs: "10"
2023-10-25 02:46:56,141 - shuffle: "True"
2023-10-25 02:46:56,141 ----------------------------------------------------------------------------------------------------
2023-10-25 02:46:56,141 Plugins:
2023-10-25 02:46:56,141 - TensorboardLogger
2023-10-25 02:46:56,141 - LinearScheduler | warmup_fraction: '0.1'
2023-10-25 02:46:56,141 ----------------------------------------------------------------------------------------------------
2023-10-25 02:46:56,141 Final evaluation on model from best epoch (best-model.pt)
2023-10-25 02:46:56,141 - metric: "('micro avg', 'f1-score')"
2023-10-25 02:46:56,141 ----------------------------------------------------------------------------------------------------
2023-10-25 02:46:56,141 Computation:
2023-10-25 02:46:56,141 - compute on device: cuda:0
2023-10-25 02:46:56,141 - embedding storage: none
2023-10-25 02:46:56,141 ----------------------------------------------------------------------------------------------------
2023-10-25 02:46:56,142 Model training base path: "hmbench-icdar/nl-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5"
2023-10-25 02:46:56,142 ----------------------------------------------------------------------------------------------------
2023-10-25 02:46:56,142 ----------------------------------------------------------------------------------------------------
2023-10-25 02:46:56,142 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-25 02:47:06,559 epoch 1 - iter 144/1445 - loss 1.41992500 - time (sec): 10.42 - samples/sec: 1608.70 - lr: 0.000005 - momentum: 0.000000
2023-10-25 02:47:16,662 epoch 1 - iter 288/1445 - loss 0.83750215 - time (sec): 20.52 - samples/sec: 1606.10 - lr: 0.000010 - momentum: 0.000000
2023-10-25 02:47:26,992 epoch 1 - iter 432/1445 - loss 0.61481097 - time (sec): 30.85 - samples/sec: 1627.37 - lr: 0.000015 - momentum: 0.000000
2023-10-25 02:47:37,751 epoch 1 - iter 576/1445 - loss 0.49739072 - time (sec): 41.61 - samples/sec: 1645.66 - lr: 0.000020 - momentum: 0.000000
2023-10-25 02:47:47,972 epoch 1 - iter 720/1445 - loss 0.43005049 - time (sec): 51.83 - samples/sec: 1642.73 - lr: 0.000025 - momentum: 0.000000
2023-10-25 02:47:58,593 epoch 1 - iter 864/1445 - loss 0.37973109 - time (sec): 62.45 - samples/sec: 1661.45 - lr: 0.000030 - momentum: 0.000000
2023-10-25 02:48:09,290 epoch 1 - iter 1008/1445 - loss 0.34700059 - time (sec): 73.15 - samples/sec: 1663.30 - lr: 0.000035 - momentum: 0.000000
2023-10-25 02:48:19,641 epoch 1 - iter 1152/1445 - loss 0.32342178 - time (sec): 83.50 - samples/sec: 1663.16 - lr: 0.000040 - momentum: 0.000000
2023-10-25 02:48:30,241 epoch 1 - iter 1296/1445 - loss 0.30192614 - time (sec): 94.10 - samples/sec: 1673.20 - lr: 0.000045 - momentum: 0.000000
2023-10-25 02:48:41,018 epoch 1 - iter 1440/1445 - loss 0.28526748 - time (sec): 104.88 - samples/sec: 1674.11 - lr: 0.000050 - momentum: 0.000000
2023-10-25 02:48:41,391 ----------------------------------------------------------------------------------------------------
2023-10-25 02:48:41,391 EPOCH 1 done: loss 0.2846 - lr: 0.000050
2023-10-25 02:48:44,710 DEV : loss 0.1542755663394928 - f1-score (micro avg) 0.6051
2023-10-25 02:48:44,722 saving best model
2023-10-25 02:48:45,190 ----------------------------------------------------------------------------------------------------
2023-10-25 02:48:55,635 epoch 2 - iter 144/1445 - loss 0.13673856 - time (sec): 10.44 - samples/sec: 1638.04 - lr: 0.000049 - momentum: 0.000000
2023-10-25 02:49:05,928 epoch 2 - iter 288/1445 - loss 0.12547644 - time (sec): 20.74 - samples/sec: 1655.38 - lr: 0.000049 - momentum: 0.000000
2023-10-25 02:49:16,263 epoch 2 - iter 432/1445 - loss 0.12065053 - time (sec): 31.07 - samples/sec: 1663.96 - lr: 0.000048 - momentum: 0.000000
2023-10-25 02:49:26,771 epoch 2 - iter 576/1445 - loss 0.11765343 - time (sec): 41.58 - samples/sec: 1664.67 - lr: 0.000048 - momentum: 0.000000
2023-10-25 02:49:37,344 epoch 2 - iter 720/1445 - loss 0.11380688 - time (sec): 52.15 - samples/sec: 1658.88 - lr: 0.000047 - momentum: 0.000000
2023-10-25 02:49:47,754 epoch 2 - iter 864/1445 - loss 0.10924427 - time (sec): 62.56 - samples/sec: 1659.33 - lr: 0.000047 - momentum: 0.000000
2023-10-25 02:49:58,240 epoch 2 - iter 1008/1445 - loss 0.10937149 - time (sec): 73.05 - samples/sec: 1657.31 - lr: 0.000046 - momentum: 0.000000
2023-10-25 02:50:08,713 epoch 2 - iter 1152/1445 - loss 0.10758530 - time (sec): 83.52 - samples/sec: 1657.90 - lr: 0.000046 - momentum: 0.000000
2023-10-25 02:50:19,491 epoch 2 - iter 1296/1445 - loss 0.10797866 - time (sec): 94.30 - samples/sec: 1664.21 - lr: 0.000045 - momentum: 0.000000
2023-10-25 02:50:30,412 epoch 2 - iter 1440/1445 - loss 0.10647364 - time (sec): 105.22 - samples/sec: 1669.24 - lr: 0.000044 - momentum: 0.000000
2023-10-25 02:50:30,787 ----------------------------------------------------------------------------------------------------
2023-10-25 02:50:30,787 EPOCH 2 done: loss 0.1066 - lr: 0.000044
2023-10-25 02:50:34,509 DEV : loss 0.11031629890203476 - f1-score (micro avg) 0.7728
2023-10-25 02:50:34,521 saving best model
2023-10-25 02:50:35,113 ----------------------------------------------------------------------------------------------------
2023-10-25 02:50:45,558 epoch 3 - iter 144/1445 - loss 0.07409640 - time (sec): 10.44 - samples/sec: 1639.70 - lr: 0.000044 - momentum: 0.000000
2023-10-25 02:50:56,017 epoch 3 - iter 288/1445 - loss 0.07630135 - time (sec): 20.90 - samples/sec: 1654.39 - lr: 0.000043 - momentum: 0.000000
2023-10-25 02:51:07,031 epoch 3 - iter 432/1445 - loss 0.08021788 - time (sec): 31.92 - samples/sec: 1679.11 - lr: 0.000043 - momentum: 0.000000
2023-10-25 02:51:17,656 epoch 3 - iter 576/1445 - loss 0.07837193 - time (sec): 42.54 - samples/sec: 1682.70 - lr: 0.000042 - momentum: 0.000000
2023-10-25 02:51:28,235 epoch 3 - iter 720/1445 - loss 0.07656273 - time (sec): 53.12 - samples/sec: 1688.18 - lr: 0.000042 - momentum: 0.000000
2023-10-25 02:51:38,586 epoch 3 - iter 864/1445 - loss 0.07895927 - time (sec): 63.47 - samples/sec: 1678.32 - lr: 0.000041 - momentum: 0.000000
2023-10-25 02:51:48,847 epoch 3 - iter 1008/1445 - loss 0.08436579 - time (sec): 73.73 - samples/sec: 1672.24 - lr: 0.000041 - momentum: 0.000000
2023-10-25 02:51:59,241 epoch 3 - iter 1152/1445 - loss 0.09116929 - time (sec): 84.13 - samples/sec: 1671.53 - lr: 0.000040 - momentum: 0.000000
2023-10-25 02:52:09,636 epoch 3 - iter 1296/1445 - loss 0.09128422 - time (sec): 94.52 - samples/sec: 1669.67 - lr: 0.000039 - momentum: 0.000000
2023-10-25 02:52:20,362 epoch 3 - iter 1440/1445 - loss 0.08962111 - time (sec): 105.25 - samples/sec: 1667.25 - lr: 0.000039 - momentum: 0.000000
2023-10-25 02:52:20,775 ----------------------------------------------------------------------------------------------------
2023-10-25 02:52:20,775 EPOCH 3 done: loss 0.0894 - lr: 0.000039
2023-10-25 02:52:24,214 DEV : loss 0.11695380508899689 - f1-score (micro avg) 0.8041
2023-10-25 02:52:24,226 saving best model
2023-10-25 02:52:24,813 ----------------------------------------------------------------------------------------------------
2023-10-25 02:52:35,169 epoch 4 - iter 144/1445 - loss 0.03918180 - time (sec): 10.36 - samples/sec: 1624.10 - lr: 0.000038 - momentum: 0.000000
2023-10-25 02:52:45,714 epoch 4 - iter 288/1445 - loss 0.04881504 - time (sec): 20.90 - samples/sec: 1665.17 - lr: 0.000038 - momentum: 0.000000
2023-10-25 02:52:56,634 epoch 4 - iter 432/1445 - loss 0.05723016 - time (sec): 31.82 - samples/sec: 1675.80 - lr: 0.000037 - momentum: 0.000000
2023-10-25 02:53:07,551 epoch 4 - iter 576/1445 - loss 0.05964875 - time (sec): 42.74 - samples/sec: 1662.42 - lr: 0.000037 - momentum: 0.000000
2023-10-25 02:53:18,165 epoch 4 - iter 720/1445 - loss 0.06496166 - time (sec): 53.35 - samples/sec: 1663.62 - lr: 0.000036 - momentum: 0.000000
2023-10-25 02:53:28,417 epoch 4 - iter 864/1445 - loss 0.06350446 - time (sec): 63.60 - samples/sec: 1657.23 - lr: 0.000036 - momentum: 0.000000
2023-10-25 02:53:39,264 epoch 4 - iter 1008/1445 - loss 0.06051938 - time (sec): 74.45 - samples/sec: 1668.13 - lr: 0.000035 - momentum: 0.000000
2023-10-25 02:53:49,798 epoch 4 - iter 1152/1445 - loss 0.05887437 - time (sec): 84.98 - samples/sec: 1664.26 - lr: 0.000034 - momentum: 0.000000
2023-10-25 02:53:59,973 epoch 4 - iter 1296/1445 - loss 0.05970754 - time (sec): 95.16 - samples/sec: 1658.41 - lr: 0.000034 - momentum: 0.000000
2023-10-25 02:54:10,424 epoch 4 - iter 1440/1445 - loss 0.06161537 - time (sec): 105.61 - samples/sec: 1665.35 - lr: 0.000033 - momentum: 0.000000
2023-10-25 02:54:10,740 ----------------------------------------------------------------------------------------------------
2023-10-25 02:54:10,741 EPOCH 4 done: loss 0.0615 - lr: 0.000033
2023-10-25 02:54:14,480 DEV : loss 0.13216571509838104 - f1-score (micro avg) 0.8015
2023-10-25 02:54:14,492 ----------------------------------------------------------------------------------------------------
2023-10-25 02:54:24,879 epoch 5 - iter 144/1445 - loss 0.06199165 - time (sec): 10.39 - samples/sec: 1705.07 - lr: 0.000033 - momentum: 0.000000
2023-10-25 02:54:35,549 epoch 5 - iter 288/1445 - loss 0.05502521 - time (sec): 21.06 - samples/sec: 1682.58 - lr: 0.000032 - momentum: 0.000000
2023-10-25 02:54:45,983 epoch 5 - iter 432/1445 - loss 0.04870086 - time (sec): 31.49 - samples/sec: 1677.67 - lr: 0.000032 - momentum: 0.000000
2023-10-25 02:54:56,195 epoch 5 - iter 576/1445 - loss 0.04642585 - time (sec): 41.70 - samples/sec: 1658.92 - lr: 0.000031 - momentum: 0.000000
2023-10-25 02:55:06,571 epoch 5 - iter 720/1445 - loss 0.04392696 - time (sec): 52.08 - samples/sec: 1655.67 - lr: 0.000031 - momentum: 0.000000
2023-10-25 02:55:17,601 epoch 5 - iter 864/1445 - loss 0.04447623 - time (sec): 63.11 - samples/sec: 1657.97 - lr: 0.000030 - momentum: 0.000000
2023-10-25 02:55:27,945 epoch 5 - iter 1008/1445 - loss 0.04459240 - time (sec): 73.45 - samples/sec: 1653.81 - lr: 0.000029 - momentum: 0.000000
2023-10-25 02:55:38,678 epoch 5 - iter 1152/1445 - loss 0.04961076 - time (sec): 84.18 - samples/sec: 1658.29 - lr: 0.000029 - momentum: 0.000000
2023-10-25 02:55:49,606 epoch 5 - iter 1296/1445 - loss 0.04875402 - time (sec): 95.11 - samples/sec: 1664.22 - lr: 0.000028 - momentum: 0.000000
2023-10-25 02:56:00,149 epoch 5 - iter 1440/1445 - loss 0.04823764 - time (sec): 105.66 - samples/sec: 1663.89 - lr: 0.000028 - momentum: 0.000000
2023-10-25 02:56:00,456 ----------------------------------------------------------------------------------------------------
2023-10-25 02:56:00,456 EPOCH 5 done: loss 0.0481 - lr: 0.000028
2023-10-25 02:56:03,895 DEV : loss 0.17967477440834045 - f1-score (micro avg) 0.7802
2023-10-25 02:56:03,907 ----------------------------------------------------------------------------------------------------
2023-10-25 02:56:14,551 epoch 6 - iter 144/1445 - loss 0.03163337 - time (sec): 10.64 - samples/sec: 1693.03 - lr: 0.000027 - momentum: 0.000000
2023-10-25 02:56:24,608 epoch 6 - iter 288/1445 - loss 0.03147930 - time (sec): 20.70 - samples/sec: 1646.79 - lr: 0.000027 - momentum: 0.000000
2023-10-25 02:56:35,463 epoch 6 - iter 432/1445 - loss 0.03580689 - time (sec): 31.56 - samples/sec: 1649.58 - lr: 0.000026 - momentum: 0.000000
2023-10-25 02:56:46,549 epoch 6 - iter 576/1445 - loss 0.03627773 - time (sec): 42.64 - samples/sec: 1670.01 - lr: 0.000026 - momentum: 0.000000
2023-10-25 02:56:57,225 epoch 6 - iter 720/1445 - loss 0.03566348 - time (sec): 53.32 - samples/sec: 1669.72 - lr: 0.000025 - momentum: 0.000000
2023-10-25 02:57:07,988 epoch 6 - iter 864/1445 - loss 0.03475012 - time (sec): 64.08 - samples/sec: 1668.18 - lr: 0.000024 - momentum: 0.000000
2023-10-25 02:57:18,683 epoch 6 - iter 1008/1445 - loss 0.03482640 - time (sec): 74.78 - samples/sec: 1666.19 - lr: 0.000024 - momentum: 0.000000
2023-10-25 02:57:29,048 epoch 6 - iter 1152/1445 - loss 0.03505707 - time (sec): 85.14 - samples/sec: 1665.92 - lr: 0.000023 - momentum: 0.000000
2023-10-25 02:57:39,148 epoch 6 - iter 1296/1445 - loss 0.03463365 - time (sec): 95.24 - samples/sec: 1662.76 - lr: 0.000023 - momentum: 0.000000
2023-10-25 02:57:49,762 epoch 6 - iter 1440/1445 - loss 0.03384896 - time (sec): 105.85 - samples/sec: 1660.33 - lr: 0.000022 - momentum: 0.000000
2023-10-25 02:57:50,108 ----------------------------------------------------------------------------------------------------
2023-10-25 02:57:50,109 EPOCH 6 done: loss 0.0340 - lr: 0.000022
2023-10-25 02:57:53,734 DEV : loss 0.19392693042755127 - f1-score (micro avg) 0.7865
2023-10-25 02:57:53,746 ----------------------------------------------------------------------------------------------------
2023-10-25 02:58:04,444 epoch 7 - iter 144/1445 - loss 0.02104653 - time (sec): 10.70 - samples/sec: 1703.89 - lr: 0.000022 - momentum: 0.000000
2023-10-25 02:58:15,335 epoch 7 - iter 288/1445 - loss 0.02262133 - time (sec): 21.59 - samples/sec: 1693.04 - lr: 0.000021 - momentum: 0.000000
2023-10-25 02:58:25,695 epoch 7 - iter 432/1445 - loss 0.02260463 - time (sec): 31.95 - samples/sec: 1671.25 - lr: 0.000021 - momentum: 0.000000
2023-10-25 02:58:36,269 epoch 7 - iter 576/1445 - loss 0.02285538 - time (sec): 42.52 - samples/sec: 1671.62 - lr: 0.000020 - momentum: 0.000000
2023-10-25 02:58:46,882 epoch 7 - iter 720/1445 - loss 0.02395447 - time (sec): 53.14 - samples/sec: 1666.26 - lr: 0.000019 - momentum: 0.000000
2023-10-25 02:58:57,348 epoch 7 - iter 864/1445 - loss 0.02356108 - time (sec): 63.60 - samples/sec: 1666.38 - lr: 0.000019 - momentum: 0.000000
2023-10-25 02:59:08,001 epoch 7 - iter 1008/1445 - loss 0.02380507 - time (sec): 74.25 - samples/sec: 1657.93 - lr: 0.000018 - momentum: 0.000000
2023-10-25 02:59:18,803 epoch 7 - iter 1152/1445 - loss 0.02353631 - time (sec): 85.06 - samples/sec: 1664.56 - lr: 0.000018 - momentum: 0.000000
2023-10-25 02:59:29,267 epoch 7 - iter 1296/1445 - loss 0.02194398 - time (sec): 95.52 - samples/sec: 1663.25 - lr: 0.000017 - momentum: 0.000000
2023-10-25 02:59:39,492 epoch 7 - iter 1440/1445 - loss 0.02210131 - time (sec): 105.75 - samples/sec: 1659.64 - lr: 0.000017 - momentum: 0.000000
2023-10-25 02:59:39,930 ----------------------------------------------------------------------------------------------------
2023-10-25 02:59:39,931 EPOCH 7 done: loss 0.0220 - lr: 0.000017
2023-10-25 02:59:43,674 DEV : loss 0.23535600304603577 - f1-score (micro avg) 0.7756
2023-10-25 02:59:43,687 ----------------------------------------------------------------------------------------------------
2023-10-25 02:59:53,987 epoch 8 - iter 144/1445 - loss 0.03149949 - time (sec): 10.30 - samples/sec: 1642.87 - lr: 0.000016 - momentum: 0.000000
2023-10-25 03:00:04,253 epoch 8 - iter 288/1445 - loss 0.02071536 - time (sec): 20.57 - samples/sec: 1650.08 - lr: 0.000016 - momentum: 0.000000
2023-10-25 03:00:14,564 epoch 8 - iter 432/1445 - loss 0.01773973 - time (sec): 30.88 - samples/sec: 1634.62 - lr: 0.000015 - momentum: 0.000000
2023-10-25 03:00:25,173 epoch 8 - iter 576/1445 - loss 0.01610270 - time (sec): 41.49 - samples/sec: 1626.91 - lr: 0.000014 - momentum: 0.000000
2023-10-25 03:00:35,755 epoch 8 - iter 720/1445 - loss 0.01622486 - time (sec): 52.07 - samples/sec: 1630.60 - lr: 0.000014 - momentum: 0.000000
2023-10-25 03:00:46,361 epoch 8 - iter 864/1445 - loss 0.01676869 - time (sec): 62.67 - samples/sec: 1637.19 - lr: 0.000013 - momentum: 0.000000
2023-10-25 03:00:57,090 epoch 8 - iter 1008/1445 - loss 0.01710768 - time (sec): 73.40 - samples/sec: 1634.69 - lr: 0.000013 - momentum: 0.000000
2023-10-25 03:01:07,556 epoch 8 - iter 1152/1445 - loss 0.01752298 - time (sec): 83.87 - samples/sec: 1640.12 - lr: 0.000012 - momentum: 0.000000
2023-10-25 03:01:18,207 epoch 8 - iter 1296/1445 - loss 0.01776129 - time (sec): 94.52 - samples/sec: 1653.16 - lr: 0.000012 - momentum: 0.000000
2023-10-25 03:01:29,416 epoch 8 - iter 1440/1445 - loss 0.01686894 - time (sec): 105.73 - samples/sec: 1661.17 - lr: 0.000011 - momentum: 0.000000
2023-10-25 03:01:29,739 ----------------------------------------------------------------------------------------------------
2023-10-25 03:01:29,739 EPOCH 8 done: loss 0.0169 - lr: 0.000011
2023-10-25 03:01:33,176 DEV : loss 0.18213523924350739 - f1-score (micro avg) 0.8075
2023-10-25 03:01:33,188 saving best model
2023-10-25 03:01:33,784 ----------------------------------------------------------------------------------------------------
2023-10-25 03:01:44,818 epoch 9 - iter 144/1445 - loss 0.00928022 - time (sec): 11.03 - samples/sec: 1645.09 - lr: 0.000011 - momentum: 0.000000
2023-10-25 03:01:55,751 epoch 9 - iter 288/1445 - loss 0.00982455 - time (sec): 21.97 - samples/sec: 1642.30 - lr: 0.000010 - momentum: 0.000000
2023-10-25 03:02:06,431 epoch 9 - iter 432/1445 - loss 0.00960726 - time (sec): 32.65 - samples/sec: 1673.59 - lr: 0.000009 - momentum: 0.000000
2023-10-25 03:02:16,942 epoch 9 - iter 576/1445 - loss 0.01120061 - time (sec): 43.16 - samples/sec: 1678.01 - lr: 0.000009 - momentum: 0.000000
2023-10-25 03:02:27,098 epoch 9 - iter 720/1445 - loss 0.01132071 - time (sec): 53.31 - samples/sec: 1666.57 - lr: 0.000008 - momentum: 0.000000
2023-10-25 03:02:37,414 epoch 9 - iter 864/1445 - loss 0.01068480 - time (sec): 63.63 - samples/sec: 1655.90 - lr: 0.000008 - momentum: 0.000000
2023-10-25 03:02:48,001 epoch 9 - iter 1008/1445 - loss 0.01040525 - time (sec): 74.22 - samples/sec: 1664.80 - lr: 0.000007 - momentum: 0.000000
2023-10-25 03:02:58,532 epoch 9 - iter 1152/1445 - loss 0.01019932 - time (sec): 84.75 - samples/sec: 1665.27 - lr: 0.000007 - momentum: 0.000000
2023-10-25 03:03:09,258 epoch 9 - iter 1296/1445 - loss 0.01091489 - time (sec): 95.47 - samples/sec: 1663.60 - lr: 0.000006 - momentum: 0.000000
2023-10-25 03:03:19,627 epoch 9 - iter 1440/1445 - loss 0.01075625 - time (sec): 105.84 - samples/sec: 1660.69 - lr: 0.000006 - momentum: 0.000000
2023-10-25 03:03:19,963 ----------------------------------------------------------------------------------------------------
2023-10-25 03:03:19,963 EPOCH 9 done: loss 0.0107 - lr: 0.000006
2023-10-25 03:03:23,388 DEV : loss 0.170689657330513 - f1-score (micro avg) 0.8228
2023-10-25 03:03:23,400 saving best model
2023-10-25 03:03:23,962 ----------------------------------------------------------------------------------------------------
2023-10-25 03:03:34,646 epoch 10 - iter 144/1445 - loss 0.00334886 - time (sec): 10.68 - samples/sec: 1665.67 - lr: 0.000005 - momentum: 0.000000
2023-10-25 03:03:45,380 epoch 10 - iter 288/1445 - loss 0.00315989 - time (sec): 21.42 - samples/sec: 1672.04 - lr: 0.000004 - momentum: 0.000000
2023-10-25 03:03:55,756 epoch 10 - iter 432/1445 - loss 0.00562550 - time (sec): 31.79 - samples/sec: 1651.83 - lr: 0.000004 - momentum: 0.000000
2023-10-25 03:04:06,159 epoch 10 - iter 576/1445 - loss 0.00612415 - time (sec): 42.20 - samples/sec: 1646.36 - lr: 0.000003 - momentum: 0.000000
2023-10-25 03:04:16,580 epoch 10 - iter 720/1445 - loss 0.00595122 - time (sec): 52.62 - samples/sec: 1645.55 - lr: 0.000003 - momentum: 0.000000
2023-10-25 03:04:26,978 epoch 10 - iter 864/1445 - loss 0.00564152 - time (sec): 63.02 - samples/sec: 1654.45 - lr: 0.000002 - momentum: 0.000000
2023-10-25 03:04:37,572 epoch 10 - iter 1008/1445 - loss 0.00580851 - time (sec): 73.61 - samples/sec: 1649.51 - lr: 0.000002 - momentum: 0.000000
2023-10-25 03:04:48,061 epoch 10 - iter 1152/1445 - loss 0.00639612 - time (sec): 84.10 - samples/sec: 1643.68 - lr: 0.000001 - momentum: 0.000000
2023-10-25 03:04:58,876 epoch 10 - iter 1296/1445 - loss 0.00636865 - time (sec): 94.91 - samples/sec: 1649.65 - lr: 0.000001 - momentum: 0.000000
2023-10-25 03:05:09,697 epoch 10 - iter 1440/1445 - loss 0.00635474 - time (sec): 105.73 - samples/sec: 1660.15 - lr: 0.000000 - momentum: 0.000000
2023-10-25 03:05:10,044 ----------------------------------------------------------------------------------------------------
2023-10-25 03:05:10,044 EPOCH 10 done: loss 0.0065 - lr: 0.000000
2023-10-25 03:05:13,783 DEV : loss 0.2022934854030609 - f1-score (micro avg) 0.8098
2023-10-25 03:05:14,262 ----------------------------------------------------------------------------------------------------
2023-10-25 03:05:14,263 Loading model from best epoch ...
2023-10-25 03:05:15,995 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG
2023-10-25 03:05:19,560
Results:
- F-score (micro) 0.8085
- F-score (macro) 0.7092
- Accuracy 0.6905
By class:
precision recall f1-score support
PER 0.8294 0.7967 0.8127 482
LOC 0.8900 0.8122 0.8493 458
ORG 0.5745 0.3913 0.4655 69
micro avg 0.8438 0.7760 0.8085 1009
macro avg 0.7646 0.6667 0.7092 1009
weighted avg 0.8394 0.7760 0.8056 1009
2023-10-25 03:05:19,560 ----------------------------------------------------------------------------------------------------
|