2023-10-25 02:46:56,140 ---------------------------------------------------------------------------------------------------- 2023-10-25 02:46:56,141 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(64001, 768) (position_embeddings): Embedding(512, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (1): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (2): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (3): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (4): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (5): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (6): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (7): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (8): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (9): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (10): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (11): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=768, out_features=768, bias=True) (activation): Tanh() ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=768, out_features=13, bias=True) (loss_function): CrossEntropyLoss() )" 2023-10-25 02:46:56,141 ---------------------------------------------------------------------------------------------------- 2023-10-25 02:46:56,141 MultiCorpus: 5777 train + 722 dev + 723 test sentences - NER_ICDAR_EUROPEANA Corpus: 5777 train + 722 dev + 723 test sentences - /home/ubuntu/.flair/datasets/ner_icdar_europeana/nl 2023-10-25 02:46:56,141 ---------------------------------------------------------------------------------------------------- 2023-10-25 02:46:56,141 Train: 5777 sentences 2023-10-25 02:46:56,141 (train_with_dev=False, train_with_test=False) 2023-10-25 02:46:56,141 ---------------------------------------------------------------------------------------------------- 2023-10-25 02:46:56,141 Training Params: 2023-10-25 02:46:56,141 - learning_rate: "5e-05" 2023-10-25 02:46:56,141 - mini_batch_size: "4" 2023-10-25 02:46:56,141 - max_epochs: "10" 2023-10-25 02:46:56,141 - shuffle: "True" 2023-10-25 02:46:56,141 ---------------------------------------------------------------------------------------------------- 2023-10-25 02:46:56,141 Plugins: 2023-10-25 02:46:56,141 - TensorboardLogger 2023-10-25 02:46:56,141 - LinearScheduler | warmup_fraction: '0.1' 2023-10-25 02:46:56,141 ---------------------------------------------------------------------------------------------------- 2023-10-25 02:46:56,141 Final evaluation on model from best epoch (best-model.pt) 2023-10-25 02:46:56,141 - metric: "('micro avg', 'f1-score')" 2023-10-25 02:46:56,141 ---------------------------------------------------------------------------------------------------- 2023-10-25 02:46:56,141 Computation: 2023-10-25 02:46:56,141 - compute on device: cuda:0 2023-10-25 02:46:56,141 - embedding storage: none 2023-10-25 02:46:56,141 ---------------------------------------------------------------------------------------------------- 2023-10-25 02:46:56,142 Model training base path: "hmbench-icdar/nl-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5" 2023-10-25 02:46:56,142 ---------------------------------------------------------------------------------------------------- 2023-10-25 02:46:56,142 ---------------------------------------------------------------------------------------------------- 2023-10-25 02:46:56,142 Logging anything other than scalars to TensorBoard is currently not supported. 2023-10-25 02:47:06,559 epoch 1 - iter 144/1445 - loss 1.41992500 - time (sec): 10.42 - samples/sec: 1608.70 - lr: 0.000005 - momentum: 0.000000 2023-10-25 02:47:16,662 epoch 1 - iter 288/1445 - loss 0.83750215 - time (sec): 20.52 - samples/sec: 1606.10 - lr: 0.000010 - momentum: 0.000000 2023-10-25 02:47:26,992 epoch 1 - iter 432/1445 - loss 0.61481097 - time (sec): 30.85 - samples/sec: 1627.37 - lr: 0.000015 - momentum: 0.000000 2023-10-25 02:47:37,751 epoch 1 - iter 576/1445 - loss 0.49739072 - time (sec): 41.61 - samples/sec: 1645.66 - lr: 0.000020 - momentum: 0.000000 2023-10-25 02:47:47,972 epoch 1 - iter 720/1445 - loss 0.43005049 - time (sec): 51.83 - samples/sec: 1642.73 - lr: 0.000025 - momentum: 0.000000 2023-10-25 02:47:58,593 epoch 1 - iter 864/1445 - loss 0.37973109 - time (sec): 62.45 - samples/sec: 1661.45 - lr: 0.000030 - momentum: 0.000000 2023-10-25 02:48:09,290 epoch 1 - iter 1008/1445 - loss 0.34700059 - time (sec): 73.15 - samples/sec: 1663.30 - lr: 0.000035 - momentum: 0.000000 2023-10-25 02:48:19,641 epoch 1 - iter 1152/1445 - loss 0.32342178 - time (sec): 83.50 - samples/sec: 1663.16 - lr: 0.000040 - momentum: 0.000000 2023-10-25 02:48:30,241 epoch 1 - iter 1296/1445 - loss 0.30192614 - time (sec): 94.10 - samples/sec: 1673.20 - lr: 0.000045 - momentum: 0.000000 2023-10-25 02:48:41,018 epoch 1 - iter 1440/1445 - loss 0.28526748 - time (sec): 104.88 - samples/sec: 1674.11 - lr: 0.000050 - momentum: 0.000000 2023-10-25 02:48:41,391 ---------------------------------------------------------------------------------------------------- 2023-10-25 02:48:41,391 EPOCH 1 done: loss 0.2846 - lr: 0.000050 2023-10-25 02:48:44,710 DEV : loss 0.1542755663394928 - f1-score (micro avg) 0.6051 2023-10-25 02:48:44,722 saving best model 2023-10-25 02:48:45,190 ---------------------------------------------------------------------------------------------------- 2023-10-25 02:48:55,635 epoch 2 - iter 144/1445 - loss 0.13673856 - time (sec): 10.44 - samples/sec: 1638.04 - lr: 0.000049 - momentum: 0.000000 2023-10-25 02:49:05,928 epoch 2 - iter 288/1445 - loss 0.12547644 - time (sec): 20.74 - samples/sec: 1655.38 - lr: 0.000049 - momentum: 0.000000 2023-10-25 02:49:16,263 epoch 2 - iter 432/1445 - loss 0.12065053 - time (sec): 31.07 - samples/sec: 1663.96 - lr: 0.000048 - momentum: 0.000000 2023-10-25 02:49:26,771 epoch 2 - iter 576/1445 - loss 0.11765343 - time (sec): 41.58 - samples/sec: 1664.67 - lr: 0.000048 - momentum: 0.000000 2023-10-25 02:49:37,344 epoch 2 - iter 720/1445 - loss 0.11380688 - time (sec): 52.15 - samples/sec: 1658.88 - lr: 0.000047 - momentum: 0.000000 2023-10-25 02:49:47,754 epoch 2 - iter 864/1445 - loss 0.10924427 - time (sec): 62.56 - samples/sec: 1659.33 - lr: 0.000047 - momentum: 0.000000 2023-10-25 02:49:58,240 epoch 2 - iter 1008/1445 - loss 0.10937149 - time (sec): 73.05 - samples/sec: 1657.31 - lr: 0.000046 - momentum: 0.000000 2023-10-25 02:50:08,713 epoch 2 - iter 1152/1445 - loss 0.10758530 - time (sec): 83.52 - samples/sec: 1657.90 - lr: 0.000046 - momentum: 0.000000 2023-10-25 02:50:19,491 epoch 2 - iter 1296/1445 - loss 0.10797866 - time (sec): 94.30 - samples/sec: 1664.21 - lr: 0.000045 - momentum: 0.000000 2023-10-25 02:50:30,412 epoch 2 - iter 1440/1445 - loss 0.10647364 - time (sec): 105.22 - samples/sec: 1669.24 - lr: 0.000044 - momentum: 0.000000 2023-10-25 02:50:30,787 ---------------------------------------------------------------------------------------------------- 2023-10-25 02:50:30,787 EPOCH 2 done: loss 0.1066 - lr: 0.000044 2023-10-25 02:50:34,509 DEV : loss 0.11031629890203476 - f1-score (micro avg) 0.7728 2023-10-25 02:50:34,521 saving best model 2023-10-25 02:50:35,113 ---------------------------------------------------------------------------------------------------- 2023-10-25 02:50:45,558 epoch 3 - iter 144/1445 - loss 0.07409640 - time (sec): 10.44 - samples/sec: 1639.70 - lr: 0.000044 - momentum: 0.000000 2023-10-25 02:50:56,017 epoch 3 - iter 288/1445 - loss 0.07630135 - time (sec): 20.90 - samples/sec: 1654.39 - lr: 0.000043 - momentum: 0.000000 2023-10-25 02:51:07,031 epoch 3 - iter 432/1445 - loss 0.08021788 - time (sec): 31.92 - samples/sec: 1679.11 - lr: 0.000043 - momentum: 0.000000 2023-10-25 02:51:17,656 epoch 3 - iter 576/1445 - loss 0.07837193 - time (sec): 42.54 - samples/sec: 1682.70 - lr: 0.000042 - momentum: 0.000000 2023-10-25 02:51:28,235 epoch 3 - iter 720/1445 - loss 0.07656273 - time (sec): 53.12 - samples/sec: 1688.18 - lr: 0.000042 - momentum: 0.000000 2023-10-25 02:51:38,586 epoch 3 - iter 864/1445 - loss 0.07895927 - time (sec): 63.47 - samples/sec: 1678.32 - lr: 0.000041 - momentum: 0.000000 2023-10-25 02:51:48,847 epoch 3 - iter 1008/1445 - loss 0.08436579 - time (sec): 73.73 - samples/sec: 1672.24 - lr: 0.000041 - momentum: 0.000000 2023-10-25 02:51:59,241 epoch 3 - iter 1152/1445 - loss 0.09116929 - time (sec): 84.13 - samples/sec: 1671.53 - lr: 0.000040 - momentum: 0.000000 2023-10-25 02:52:09,636 epoch 3 - iter 1296/1445 - loss 0.09128422 - time (sec): 94.52 - samples/sec: 1669.67 - lr: 0.000039 - momentum: 0.000000 2023-10-25 02:52:20,362 epoch 3 - iter 1440/1445 - loss 0.08962111 - time (sec): 105.25 - samples/sec: 1667.25 - lr: 0.000039 - momentum: 0.000000 2023-10-25 02:52:20,775 ---------------------------------------------------------------------------------------------------- 2023-10-25 02:52:20,775 EPOCH 3 done: loss 0.0894 - lr: 0.000039 2023-10-25 02:52:24,214 DEV : loss 0.11695380508899689 - f1-score (micro avg) 0.8041 2023-10-25 02:52:24,226 saving best model 2023-10-25 02:52:24,813 ---------------------------------------------------------------------------------------------------- 2023-10-25 02:52:35,169 epoch 4 - iter 144/1445 - loss 0.03918180 - time (sec): 10.36 - samples/sec: 1624.10 - lr: 0.000038 - momentum: 0.000000 2023-10-25 02:52:45,714 epoch 4 - iter 288/1445 - loss 0.04881504 - time (sec): 20.90 - samples/sec: 1665.17 - lr: 0.000038 - momentum: 0.000000 2023-10-25 02:52:56,634 epoch 4 - iter 432/1445 - loss 0.05723016 - time (sec): 31.82 - samples/sec: 1675.80 - lr: 0.000037 - momentum: 0.000000 2023-10-25 02:53:07,551 epoch 4 - iter 576/1445 - loss 0.05964875 - time (sec): 42.74 - samples/sec: 1662.42 - lr: 0.000037 - momentum: 0.000000 2023-10-25 02:53:18,165 epoch 4 - iter 720/1445 - loss 0.06496166 - time (sec): 53.35 - samples/sec: 1663.62 - lr: 0.000036 - momentum: 0.000000 2023-10-25 02:53:28,417 epoch 4 - iter 864/1445 - loss 0.06350446 - time (sec): 63.60 - samples/sec: 1657.23 - lr: 0.000036 - momentum: 0.000000 2023-10-25 02:53:39,264 epoch 4 - iter 1008/1445 - loss 0.06051938 - time (sec): 74.45 - samples/sec: 1668.13 - lr: 0.000035 - momentum: 0.000000 2023-10-25 02:53:49,798 epoch 4 - iter 1152/1445 - loss 0.05887437 - time (sec): 84.98 - samples/sec: 1664.26 - lr: 0.000034 - momentum: 0.000000 2023-10-25 02:53:59,973 epoch 4 - iter 1296/1445 - loss 0.05970754 - time (sec): 95.16 - samples/sec: 1658.41 - lr: 0.000034 - momentum: 0.000000 2023-10-25 02:54:10,424 epoch 4 - iter 1440/1445 - loss 0.06161537 - time (sec): 105.61 - samples/sec: 1665.35 - lr: 0.000033 - momentum: 0.000000 2023-10-25 02:54:10,740 ---------------------------------------------------------------------------------------------------- 2023-10-25 02:54:10,741 EPOCH 4 done: loss 0.0615 - lr: 0.000033 2023-10-25 02:54:14,480 DEV : loss 0.13216571509838104 - f1-score (micro avg) 0.8015 2023-10-25 02:54:14,492 ---------------------------------------------------------------------------------------------------- 2023-10-25 02:54:24,879 epoch 5 - iter 144/1445 - loss 0.06199165 - time (sec): 10.39 - samples/sec: 1705.07 - lr: 0.000033 - momentum: 0.000000 2023-10-25 02:54:35,549 epoch 5 - iter 288/1445 - loss 0.05502521 - time (sec): 21.06 - samples/sec: 1682.58 - lr: 0.000032 - momentum: 0.000000 2023-10-25 02:54:45,983 epoch 5 - iter 432/1445 - loss 0.04870086 - time (sec): 31.49 - samples/sec: 1677.67 - lr: 0.000032 - momentum: 0.000000 2023-10-25 02:54:56,195 epoch 5 - iter 576/1445 - loss 0.04642585 - time (sec): 41.70 - samples/sec: 1658.92 - lr: 0.000031 - momentum: 0.000000 2023-10-25 02:55:06,571 epoch 5 - iter 720/1445 - loss 0.04392696 - time (sec): 52.08 - samples/sec: 1655.67 - lr: 0.000031 - momentum: 0.000000 2023-10-25 02:55:17,601 epoch 5 - iter 864/1445 - loss 0.04447623 - time (sec): 63.11 - samples/sec: 1657.97 - lr: 0.000030 - momentum: 0.000000 2023-10-25 02:55:27,945 epoch 5 - iter 1008/1445 - loss 0.04459240 - time (sec): 73.45 - samples/sec: 1653.81 - lr: 0.000029 - momentum: 0.000000 2023-10-25 02:55:38,678 epoch 5 - iter 1152/1445 - loss 0.04961076 - time (sec): 84.18 - samples/sec: 1658.29 - lr: 0.000029 - momentum: 0.000000 2023-10-25 02:55:49,606 epoch 5 - iter 1296/1445 - loss 0.04875402 - time (sec): 95.11 - samples/sec: 1664.22 - lr: 0.000028 - momentum: 0.000000 2023-10-25 02:56:00,149 epoch 5 - iter 1440/1445 - loss 0.04823764 - time (sec): 105.66 - samples/sec: 1663.89 - lr: 0.000028 - momentum: 0.000000 2023-10-25 02:56:00,456 ---------------------------------------------------------------------------------------------------- 2023-10-25 02:56:00,456 EPOCH 5 done: loss 0.0481 - lr: 0.000028 2023-10-25 02:56:03,895 DEV : loss 0.17967477440834045 - f1-score (micro avg) 0.7802 2023-10-25 02:56:03,907 ---------------------------------------------------------------------------------------------------- 2023-10-25 02:56:14,551 epoch 6 - iter 144/1445 - loss 0.03163337 - time (sec): 10.64 - samples/sec: 1693.03 - lr: 0.000027 - momentum: 0.000000 2023-10-25 02:56:24,608 epoch 6 - iter 288/1445 - loss 0.03147930 - time (sec): 20.70 - samples/sec: 1646.79 - lr: 0.000027 - momentum: 0.000000 2023-10-25 02:56:35,463 epoch 6 - iter 432/1445 - loss 0.03580689 - time (sec): 31.56 - samples/sec: 1649.58 - lr: 0.000026 - momentum: 0.000000 2023-10-25 02:56:46,549 epoch 6 - iter 576/1445 - loss 0.03627773 - time (sec): 42.64 - samples/sec: 1670.01 - lr: 0.000026 - momentum: 0.000000 2023-10-25 02:56:57,225 epoch 6 - iter 720/1445 - loss 0.03566348 - time (sec): 53.32 - samples/sec: 1669.72 - lr: 0.000025 - momentum: 0.000000 2023-10-25 02:57:07,988 epoch 6 - iter 864/1445 - loss 0.03475012 - time (sec): 64.08 - samples/sec: 1668.18 - lr: 0.000024 - momentum: 0.000000 2023-10-25 02:57:18,683 epoch 6 - iter 1008/1445 - loss 0.03482640 - time (sec): 74.78 - samples/sec: 1666.19 - lr: 0.000024 - momentum: 0.000000 2023-10-25 02:57:29,048 epoch 6 - iter 1152/1445 - loss 0.03505707 - time (sec): 85.14 - samples/sec: 1665.92 - lr: 0.000023 - momentum: 0.000000 2023-10-25 02:57:39,148 epoch 6 - iter 1296/1445 - loss 0.03463365 - time (sec): 95.24 - samples/sec: 1662.76 - lr: 0.000023 - momentum: 0.000000 2023-10-25 02:57:49,762 epoch 6 - iter 1440/1445 - loss 0.03384896 - time (sec): 105.85 - samples/sec: 1660.33 - lr: 0.000022 - momentum: 0.000000 2023-10-25 02:57:50,108 ---------------------------------------------------------------------------------------------------- 2023-10-25 02:57:50,109 EPOCH 6 done: loss 0.0340 - lr: 0.000022 2023-10-25 02:57:53,734 DEV : loss 0.19392693042755127 - f1-score (micro avg) 0.7865 2023-10-25 02:57:53,746 ---------------------------------------------------------------------------------------------------- 2023-10-25 02:58:04,444 epoch 7 - iter 144/1445 - loss 0.02104653 - time (sec): 10.70 - samples/sec: 1703.89 - lr: 0.000022 - momentum: 0.000000 2023-10-25 02:58:15,335 epoch 7 - iter 288/1445 - loss 0.02262133 - time (sec): 21.59 - samples/sec: 1693.04 - lr: 0.000021 - momentum: 0.000000 2023-10-25 02:58:25,695 epoch 7 - iter 432/1445 - loss 0.02260463 - time (sec): 31.95 - samples/sec: 1671.25 - lr: 0.000021 - momentum: 0.000000 2023-10-25 02:58:36,269 epoch 7 - iter 576/1445 - loss 0.02285538 - time (sec): 42.52 - samples/sec: 1671.62 - lr: 0.000020 - momentum: 0.000000 2023-10-25 02:58:46,882 epoch 7 - iter 720/1445 - loss 0.02395447 - time (sec): 53.14 - samples/sec: 1666.26 - lr: 0.000019 - momentum: 0.000000 2023-10-25 02:58:57,348 epoch 7 - iter 864/1445 - loss 0.02356108 - time (sec): 63.60 - samples/sec: 1666.38 - lr: 0.000019 - momentum: 0.000000 2023-10-25 02:59:08,001 epoch 7 - iter 1008/1445 - loss 0.02380507 - time (sec): 74.25 - samples/sec: 1657.93 - lr: 0.000018 - momentum: 0.000000 2023-10-25 02:59:18,803 epoch 7 - iter 1152/1445 - loss 0.02353631 - time (sec): 85.06 - samples/sec: 1664.56 - lr: 0.000018 - momentum: 0.000000 2023-10-25 02:59:29,267 epoch 7 - iter 1296/1445 - loss 0.02194398 - time (sec): 95.52 - samples/sec: 1663.25 - lr: 0.000017 - momentum: 0.000000 2023-10-25 02:59:39,492 epoch 7 - iter 1440/1445 - loss 0.02210131 - time (sec): 105.75 - samples/sec: 1659.64 - lr: 0.000017 - momentum: 0.000000 2023-10-25 02:59:39,930 ---------------------------------------------------------------------------------------------------- 2023-10-25 02:59:39,931 EPOCH 7 done: loss 0.0220 - lr: 0.000017 2023-10-25 02:59:43,674 DEV : loss 0.23535600304603577 - f1-score (micro avg) 0.7756 2023-10-25 02:59:43,687 ---------------------------------------------------------------------------------------------------- 2023-10-25 02:59:53,987 epoch 8 - iter 144/1445 - loss 0.03149949 - time (sec): 10.30 - samples/sec: 1642.87 - lr: 0.000016 - momentum: 0.000000 2023-10-25 03:00:04,253 epoch 8 - iter 288/1445 - loss 0.02071536 - time (sec): 20.57 - samples/sec: 1650.08 - lr: 0.000016 - momentum: 0.000000 2023-10-25 03:00:14,564 epoch 8 - iter 432/1445 - loss 0.01773973 - time (sec): 30.88 - samples/sec: 1634.62 - lr: 0.000015 - momentum: 0.000000 2023-10-25 03:00:25,173 epoch 8 - iter 576/1445 - loss 0.01610270 - time (sec): 41.49 - samples/sec: 1626.91 - lr: 0.000014 - momentum: 0.000000 2023-10-25 03:00:35,755 epoch 8 - iter 720/1445 - loss 0.01622486 - time (sec): 52.07 - samples/sec: 1630.60 - lr: 0.000014 - momentum: 0.000000 2023-10-25 03:00:46,361 epoch 8 - iter 864/1445 - loss 0.01676869 - time (sec): 62.67 - samples/sec: 1637.19 - lr: 0.000013 - momentum: 0.000000 2023-10-25 03:00:57,090 epoch 8 - iter 1008/1445 - loss 0.01710768 - time (sec): 73.40 - samples/sec: 1634.69 - lr: 0.000013 - momentum: 0.000000 2023-10-25 03:01:07,556 epoch 8 - iter 1152/1445 - loss 0.01752298 - time (sec): 83.87 - samples/sec: 1640.12 - lr: 0.000012 - momentum: 0.000000 2023-10-25 03:01:18,207 epoch 8 - iter 1296/1445 - loss 0.01776129 - time (sec): 94.52 - samples/sec: 1653.16 - lr: 0.000012 - momentum: 0.000000 2023-10-25 03:01:29,416 epoch 8 - iter 1440/1445 - loss 0.01686894 - time (sec): 105.73 - samples/sec: 1661.17 - lr: 0.000011 - momentum: 0.000000 2023-10-25 03:01:29,739 ---------------------------------------------------------------------------------------------------- 2023-10-25 03:01:29,739 EPOCH 8 done: loss 0.0169 - lr: 0.000011 2023-10-25 03:01:33,176 DEV : loss 0.18213523924350739 - f1-score (micro avg) 0.8075 2023-10-25 03:01:33,188 saving best model 2023-10-25 03:01:33,784 ---------------------------------------------------------------------------------------------------- 2023-10-25 03:01:44,818 epoch 9 - iter 144/1445 - loss 0.00928022 - time (sec): 11.03 - samples/sec: 1645.09 - lr: 0.000011 - momentum: 0.000000 2023-10-25 03:01:55,751 epoch 9 - iter 288/1445 - loss 0.00982455 - time (sec): 21.97 - samples/sec: 1642.30 - lr: 0.000010 - momentum: 0.000000 2023-10-25 03:02:06,431 epoch 9 - iter 432/1445 - loss 0.00960726 - time (sec): 32.65 - samples/sec: 1673.59 - lr: 0.000009 - momentum: 0.000000 2023-10-25 03:02:16,942 epoch 9 - iter 576/1445 - loss 0.01120061 - time (sec): 43.16 - samples/sec: 1678.01 - lr: 0.000009 - momentum: 0.000000 2023-10-25 03:02:27,098 epoch 9 - iter 720/1445 - loss 0.01132071 - time (sec): 53.31 - samples/sec: 1666.57 - lr: 0.000008 - momentum: 0.000000 2023-10-25 03:02:37,414 epoch 9 - iter 864/1445 - loss 0.01068480 - time (sec): 63.63 - samples/sec: 1655.90 - lr: 0.000008 - momentum: 0.000000 2023-10-25 03:02:48,001 epoch 9 - iter 1008/1445 - loss 0.01040525 - time (sec): 74.22 - samples/sec: 1664.80 - lr: 0.000007 - momentum: 0.000000 2023-10-25 03:02:58,532 epoch 9 - iter 1152/1445 - loss 0.01019932 - time (sec): 84.75 - samples/sec: 1665.27 - lr: 0.000007 - momentum: 0.000000 2023-10-25 03:03:09,258 epoch 9 - iter 1296/1445 - loss 0.01091489 - time (sec): 95.47 - samples/sec: 1663.60 - lr: 0.000006 - momentum: 0.000000 2023-10-25 03:03:19,627 epoch 9 - iter 1440/1445 - loss 0.01075625 - time (sec): 105.84 - samples/sec: 1660.69 - lr: 0.000006 - momentum: 0.000000 2023-10-25 03:03:19,963 ---------------------------------------------------------------------------------------------------- 2023-10-25 03:03:19,963 EPOCH 9 done: loss 0.0107 - lr: 0.000006 2023-10-25 03:03:23,388 DEV : loss 0.170689657330513 - f1-score (micro avg) 0.8228 2023-10-25 03:03:23,400 saving best model 2023-10-25 03:03:23,962 ---------------------------------------------------------------------------------------------------- 2023-10-25 03:03:34,646 epoch 10 - iter 144/1445 - loss 0.00334886 - time (sec): 10.68 - samples/sec: 1665.67 - lr: 0.000005 - momentum: 0.000000 2023-10-25 03:03:45,380 epoch 10 - iter 288/1445 - loss 0.00315989 - time (sec): 21.42 - samples/sec: 1672.04 - lr: 0.000004 - momentum: 0.000000 2023-10-25 03:03:55,756 epoch 10 - iter 432/1445 - loss 0.00562550 - time (sec): 31.79 - samples/sec: 1651.83 - lr: 0.000004 - momentum: 0.000000 2023-10-25 03:04:06,159 epoch 10 - iter 576/1445 - loss 0.00612415 - time (sec): 42.20 - samples/sec: 1646.36 - lr: 0.000003 - momentum: 0.000000 2023-10-25 03:04:16,580 epoch 10 - iter 720/1445 - loss 0.00595122 - time (sec): 52.62 - samples/sec: 1645.55 - lr: 0.000003 - momentum: 0.000000 2023-10-25 03:04:26,978 epoch 10 - iter 864/1445 - loss 0.00564152 - time (sec): 63.02 - samples/sec: 1654.45 - lr: 0.000002 - momentum: 0.000000 2023-10-25 03:04:37,572 epoch 10 - iter 1008/1445 - loss 0.00580851 - time (sec): 73.61 - samples/sec: 1649.51 - lr: 0.000002 - momentum: 0.000000 2023-10-25 03:04:48,061 epoch 10 - iter 1152/1445 - loss 0.00639612 - time (sec): 84.10 - samples/sec: 1643.68 - lr: 0.000001 - momentum: 0.000000 2023-10-25 03:04:58,876 epoch 10 - iter 1296/1445 - loss 0.00636865 - time (sec): 94.91 - samples/sec: 1649.65 - lr: 0.000001 - momentum: 0.000000 2023-10-25 03:05:09,697 epoch 10 - iter 1440/1445 - loss 0.00635474 - time (sec): 105.73 - samples/sec: 1660.15 - lr: 0.000000 - momentum: 0.000000 2023-10-25 03:05:10,044 ---------------------------------------------------------------------------------------------------- 2023-10-25 03:05:10,044 EPOCH 10 done: loss 0.0065 - lr: 0.000000 2023-10-25 03:05:13,783 DEV : loss 0.2022934854030609 - f1-score (micro avg) 0.8098 2023-10-25 03:05:14,262 ---------------------------------------------------------------------------------------------------- 2023-10-25 03:05:14,263 Loading model from best epoch ... 2023-10-25 03:05:15,995 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG 2023-10-25 03:05:19,560 Results: - F-score (micro) 0.8085 - F-score (macro) 0.7092 - Accuracy 0.6905 By class: precision recall f1-score support PER 0.8294 0.7967 0.8127 482 LOC 0.8900 0.8122 0.8493 458 ORG 0.5745 0.3913 0.4655 69 micro avg 0.8438 0.7760 0.8085 1009 macro avg 0.7646 0.6667 0.7092 1009 weighted avg 0.8394 0.7760 0.8056 1009 2023-10-25 03:05:19,560 ----------------------------------------------------------------------------------------------------