Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697541186.4aef72135bc5.1113.4 +3 -0
- test.tsv +0 -0
- training.log +236 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d38b77d25d77dabfbd2060514d83bd618e1ba550323d7fb418757478123175ce
|
3 |
+
size 440941957
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 11:16:57 0.0000 0.3077 0.1089 0.4840 0.6590 0.5581 0.3910
|
3 |
+
2 11:20:53 0.0000 0.0996 0.1604 0.5471 0.8181 0.6557 0.4955
|
4 |
+
3 11:24:47 0.0000 0.0773 0.1964 0.5633 0.7437 0.6410 0.4779
|
5 |
+
4 11:28:37 0.0000 0.0571 0.2212 0.5709 0.7368 0.6434 0.4820
|
6 |
+
5 11:32:29 0.0000 0.0394 0.2980 0.5502 0.8021 0.6527 0.4940
|
7 |
+
6 11:36:27 0.0000 0.0291 0.3385 0.5511 0.7654 0.6408 0.4782
|
8 |
+
7 11:40:18 0.0000 0.0216 0.3538 0.5514 0.7918 0.6501 0.4894
|
9 |
+
8 11:44:21 0.0000 0.0130 0.3859 0.5507 0.8009 0.6527 0.4930
|
10 |
+
9 11:48:19 0.0000 0.0083 0.4002 0.5684 0.7986 0.6641 0.5040
|
11 |
+
10 11:52:15 0.0000 0.0053 0.4150 0.5612 0.8021 0.6604 0.4993
|
runs/events.out.tfevents.1697541186.4aef72135bc5.1113.4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf7fceff5327bb9e266861ee934b94fb84bdffe1ac368ec6111279059d382a36
|
3 |
+
size 2030580
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-17 11:13:06,040 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-17 11:13:06,042 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): ElectraModel(
|
5 |
+
(embeddings): ElectraEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): ElectraEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x ElectraLayer(
|
15 |
+
(attention): ElectraAttention(
|
16 |
+
(self): ElectraSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): ElectraSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): ElectraIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): ElectraOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
)
|
41 |
+
)
|
42 |
+
(locked_dropout): LockedDropout(p=0.5)
|
43 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
44 |
+
(loss_function): CrossEntropyLoss()
|
45 |
+
)"
|
46 |
+
2023-10-17 11:13:06,042 ----------------------------------------------------------------------------------------------------
|
47 |
+
2023-10-17 11:13:06,042 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
|
48 |
+
- NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
|
49 |
+
2023-10-17 11:13:06,042 ----------------------------------------------------------------------------------------------------
|
50 |
+
2023-10-17 11:13:06,042 Train: 14465 sentences
|
51 |
+
2023-10-17 11:13:06,042 (train_with_dev=False, train_with_test=False)
|
52 |
+
2023-10-17 11:13:06,042 ----------------------------------------------------------------------------------------------------
|
53 |
+
2023-10-17 11:13:06,042 Training Params:
|
54 |
+
2023-10-17 11:13:06,042 - learning_rate: "3e-05"
|
55 |
+
2023-10-17 11:13:06,042 - mini_batch_size: "4"
|
56 |
+
2023-10-17 11:13:06,042 - max_epochs: "10"
|
57 |
+
2023-10-17 11:13:06,042 - shuffle: "True"
|
58 |
+
2023-10-17 11:13:06,042 ----------------------------------------------------------------------------------------------------
|
59 |
+
2023-10-17 11:13:06,042 Plugins:
|
60 |
+
2023-10-17 11:13:06,042 - TensorboardLogger
|
61 |
+
2023-10-17 11:13:06,042 - LinearScheduler | warmup_fraction: '0.1'
|
62 |
+
2023-10-17 11:13:06,042 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-17 11:13:06,042 Final evaluation on model from best epoch (best-model.pt)
|
64 |
+
2023-10-17 11:13:06,042 - metric: "('micro avg', 'f1-score')"
|
65 |
+
2023-10-17 11:13:06,043 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-17 11:13:06,043 Computation:
|
67 |
+
2023-10-17 11:13:06,043 - compute on device: cuda:0
|
68 |
+
2023-10-17 11:13:06,043 - embedding storage: none
|
69 |
+
2023-10-17 11:13:06,043 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-17 11:13:06,043 Model training base path: "hmbench-letemps/fr-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2"
|
71 |
+
2023-10-17 11:13:06,043 ----------------------------------------------------------------------------------------------------
|
72 |
+
2023-10-17 11:13:06,043 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-17 11:13:06,043 Logging anything other than scalars to TensorBoard is currently not supported.
|
74 |
+
2023-10-17 11:13:29,167 epoch 1 - iter 361/3617 - loss 1.78814431 - time (sec): 23.12 - samples/sec: 1638.45 - lr: 0.000003 - momentum: 0.000000
|
75 |
+
2023-10-17 11:13:51,939 epoch 1 - iter 722/3617 - loss 1.02838317 - time (sec): 45.89 - samples/sec: 1619.95 - lr: 0.000006 - momentum: 0.000000
|
76 |
+
2023-10-17 11:14:14,528 epoch 1 - iter 1083/3617 - loss 0.72995508 - time (sec): 68.48 - samples/sec: 1666.05 - lr: 0.000009 - momentum: 0.000000
|
77 |
+
2023-10-17 11:14:36,884 epoch 1 - iter 1444/3617 - loss 0.58463242 - time (sec): 90.84 - samples/sec: 1681.06 - lr: 0.000012 - momentum: 0.000000
|
78 |
+
2023-10-17 11:14:59,161 epoch 1 - iter 1805/3617 - loss 0.49786262 - time (sec): 113.12 - samples/sec: 1688.72 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-10-17 11:15:21,931 epoch 1 - iter 2166/3617 - loss 0.43668822 - time (sec): 135.89 - samples/sec: 1681.37 - lr: 0.000018 - momentum: 0.000000
|
80 |
+
2023-10-17 11:15:44,174 epoch 1 - iter 2527/3617 - loss 0.38974770 - time (sec): 158.13 - samples/sec: 1685.61 - lr: 0.000021 - momentum: 0.000000
|
81 |
+
2023-10-17 11:16:06,276 epoch 1 - iter 2888/3617 - loss 0.35471982 - time (sec): 180.23 - samples/sec: 1697.15 - lr: 0.000024 - momentum: 0.000000
|
82 |
+
2023-10-17 11:16:29,303 epoch 1 - iter 3249/3617 - loss 0.32794931 - time (sec): 203.26 - samples/sec: 1690.14 - lr: 0.000027 - momentum: 0.000000
|
83 |
+
2023-10-17 11:16:51,321 epoch 1 - iter 3610/3617 - loss 0.30809550 - time (sec): 225.28 - samples/sec: 1683.37 - lr: 0.000030 - momentum: 0.000000
|
84 |
+
2023-10-17 11:16:51,740 ----------------------------------------------------------------------------------------------------
|
85 |
+
2023-10-17 11:16:51,740 EPOCH 1 done: loss 0.3077 - lr: 0.000030
|
86 |
+
2023-10-17 11:16:57,177 DEV : loss 0.10886511206626892 - f1-score (micro avg) 0.5581
|
87 |
+
2023-10-17 11:16:57,218 saving best model
|
88 |
+
2023-10-17 11:16:57,714 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-17 11:17:21,078 epoch 2 - iter 361/3617 - loss 0.09908194 - time (sec): 23.36 - samples/sec: 1665.79 - lr: 0.000030 - momentum: 0.000000
|
90 |
+
2023-10-17 11:17:43,704 epoch 2 - iter 722/3617 - loss 0.09370839 - time (sec): 45.99 - samples/sec: 1678.56 - lr: 0.000029 - momentum: 0.000000
|
91 |
+
2023-10-17 11:18:04,258 epoch 2 - iter 1083/3617 - loss 0.09669946 - time (sec): 66.54 - samples/sec: 1715.28 - lr: 0.000029 - momentum: 0.000000
|
92 |
+
2023-10-17 11:18:27,278 epoch 2 - iter 1444/3617 - loss 0.09690415 - time (sec): 89.56 - samples/sec: 1693.33 - lr: 0.000029 - momentum: 0.000000
|
93 |
+
2023-10-17 11:18:50,785 epoch 2 - iter 1805/3617 - loss 0.09640509 - time (sec): 113.07 - samples/sec: 1667.49 - lr: 0.000028 - momentum: 0.000000
|
94 |
+
2023-10-17 11:19:13,316 epoch 2 - iter 2166/3617 - loss 0.09736145 - time (sec): 135.60 - samples/sec: 1673.97 - lr: 0.000028 - momentum: 0.000000
|
95 |
+
2023-10-17 11:19:36,497 epoch 2 - iter 2527/3617 - loss 0.09724732 - time (sec): 158.78 - samples/sec: 1674.03 - lr: 0.000028 - momentum: 0.000000
|
96 |
+
2023-10-17 11:19:59,357 epoch 2 - iter 2888/3617 - loss 0.09753849 - time (sec): 181.64 - samples/sec: 1671.08 - lr: 0.000027 - momentum: 0.000000
|
97 |
+
2023-10-17 11:20:21,693 epoch 2 - iter 3249/3617 - loss 0.09835920 - time (sec): 203.98 - samples/sec: 1678.98 - lr: 0.000027 - momentum: 0.000000
|
98 |
+
2023-10-17 11:20:44,900 epoch 2 - iter 3610/3617 - loss 0.09956665 - time (sec): 227.18 - samples/sec: 1669.58 - lr: 0.000027 - momentum: 0.000000
|
99 |
+
2023-10-17 11:20:45,322 ----------------------------------------------------------------------------------------------------
|
100 |
+
2023-10-17 11:20:45,323 EPOCH 2 done: loss 0.0996 - lr: 0.000027
|
101 |
+
2023-10-17 11:20:53,342 DEV : loss 0.16037893295288086 - f1-score (micro avg) 0.6557
|
102 |
+
2023-10-17 11:20:53,398 saving best model
|
103 |
+
2023-10-17 11:20:54,092 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-17 11:21:17,522 epoch 3 - iter 361/3617 - loss 0.07564517 - time (sec): 23.43 - samples/sec: 1569.42 - lr: 0.000026 - momentum: 0.000000
|
105 |
+
2023-10-17 11:21:40,082 epoch 3 - iter 722/3617 - loss 0.07332119 - time (sec): 45.99 - samples/sec: 1636.38 - lr: 0.000026 - momentum: 0.000000
|
106 |
+
2023-10-17 11:22:02,267 epoch 3 - iter 1083/3617 - loss 0.07222144 - time (sec): 68.17 - samples/sec: 1661.66 - lr: 0.000026 - momentum: 0.000000
|
107 |
+
2023-10-17 11:22:25,386 epoch 3 - iter 1444/3617 - loss 0.07619382 - time (sec): 91.29 - samples/sec: 1655.98 - lr: 0.000025 - momentum: 0.000000
|
108 |
+
2023-10-17 11:22:48,049 epoch 3 - iter 1805/3617 - loss 0.07401567 - time (sec): 113.95 - samples/sec: 1657.30 - lr: 0.000025 - momentum: 0.000000
|
109 |
+
2023-10-17 11:23:11,429 epoch 3 - iter 2166/3617 - loss 0.07403687 - time (sec): 137.33 - samples/sec: 1661.13 - lr: 0.000025 - momentum: 0.000000
|
110 |
+
2023-10-17 11:23:34,867 epoch 3 - iter 2527/3617 - loss 0.07637370 - time (sec): 160.77 - samples/sec: 1646.45 - lr: 0.000024 - momentum: 0.000000
|
111 |
+
2023-10-17 11:23:56,997 epoch 3 - iter 2888/3617 - loss 0.07722497 - time (sec): 182.90 - samples/sec: 1656.67 - lr: 0.000024 - momentum: 0.000000
|
112 |
+
2023-10-17 11:24:18,777 epoch 3 - iter 3249/3617 - loss 0.07737109 - time (sec): 204.68 - samples/sec: 1671.08 - lr: 0.000024 - momentum: 0.000000
|
113 |
+
2023-10-17 11:24:40,574 epoch 3 - iter 3610/3617 - loss 0.07738280 - time (sec): 226.48 - samples/sec: 1674.38 - lr: 0.000023 - momentum: 0.000000
|
114 |
+
2023-10-17 11:24:41,006 ----------------------------------------------------------------------------------------------------
|
115 |
+
2023-10-17 11:24:41,007 EPOCH 3 done: loss 0.0773 - lr: 0.000023
|
116 |
+
2023-10-17 11:24:47,385 DEV : loss 0.19637347757816315 - f1-score (micro avg) 0.641
|
117 |
+
2023-10-17 11:24:47,429 ----------------------------------------------------------------------------------------------------
|
118 |
+
2023-10-17 11:25:07,646 epoch 4 - iter 361/3617 - loss 0.05411431 - time (sec): 20.22 - samples/sec: 1910.72 - lr: 0.000023 - momentum: 0.000000
|
119 |
+
2023-10-17 11:25:31,466 epoch 4 - iter 722/3617 - loss 0.05682246 - time (sec): 44.03 - samples/sec: 1731.33 - lr: 0.000023 - momentum: 0.000000
|
120 |
+
2023-10-17 11:25:53,516 epoch 4 - iter 1083/3617 - loss 0.05717665 - time (sec): 66.09 - samples/sec: 1747.56 - lr: 0.000022 - momentum: 0.000000
|
121 |
+
2023-10-17 11:26:15,688 epoch 4 - iter 1444/3617 - loss 0.05618963 - time (sec): 88.26 - samples/sec: 1736.28 - lr: 0.000022 - momentum: 0.000000
|
122 |
+
2023-10-17 11:26:38,155 epoch 4 - iter 1805/3617 - loss 0.05712367 - time (sec): 110.72 - samples/sec: 1724.46 - lr: 0.000022 - momentum: 0.000000
|
123 |
+
2023-10-17 11:27:00,949 epoch 4 - iter 2166/3617 - loss 0.05692867 - time (sec): 133.52 - samples/sec: 1712.86 - lr: 0.000021 - momentum: 0.000000
|
124 |
+
2023-10-17 11:27:23,467 epoch 4 - iter 2527/3617 - loss 0.05681678 - time (sec): 156.04 - samples/sec: 1709.15 - lr: 0.000021 - momentum: 0.000000
|
125 |
+
2023-10-17 11:27:46,046 epoch 4 - iter 2888/3617 - loss 0.05638457 - time (sec): 178.62 - samples/sec: 1709.53 - lr: 0.000021 - momentum: 0.000000
|
126 |
+
2023-10-17 11:28:08,185 epoch 4 - iter 3249/3617 - loss 0.05669655 - time (sec): 200.75 - samples/sec: 1707.91 - lr: 0.000020 - momentum: 0.000000
|
127 |
+
2023-10-17 11:28:29,984 epoch 4 - iter 3610/3617 - loss 0.05711627 - time (sec): 222.55 - samples/sec: 1704.86 - lr: 0.000020 - momentum: 0.000000
|
128 |
+
2023-10-17 11:28:30,384 ----------------------------------------------------------------------------------------------------
|
129 |
+
2023-10-17 11:28:30,384 EPOCH 4 done: loss 0.0571 - lr: 0.000020
|
130 |
+
2023-10-17 11:28:37,543 DEV : loss 0.22119659185409546 - f1-score (micro avg) 0.6434
|
131 |
+
2023-10-17 11:28:37,584 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-10-17 11:28:58,907 epoch 5 - iter 361/3617 - loss 0.02823394 - time (sec): 21.32 - samples/sec: 1779.84 - lr: 0.000020 - momentum: 0.000000
|
133 |
+
2023-10-17 11:29:20,770 epoch 5 - iter 722/3617 - loss 0.03377243 - time (sec): 43.18 - samples/sec: 1773.25 - lr: 0.000019 - momentum: 0.000000
|
134 |
+
2023-10-17 11:29:43,045 epoch 5 - iter 1083/3617 - loss 0.03634121 - time (sec): 65.46 - samples/sec: 1746.02 - lr: 0.000019 - momentum: 0.000000
|
135 |
+
2023-10-17 11:30:05,310 epoch 5 - iter 1444/3617 - loss 0.03734307 - time (sec): 87.72 - samples/sec: 1736.47 - lr: 0.000019 - momentum: 0.000000
|
136 |
+
2023-10-17 11:30:28,900 epoch 5 - iter 1805/3617 - loss 0.03666498 - time (sec): 111.31 - samples/sec: 1721.54 - lr: 0.000018 - momentum: 0.000000
|
137 |
+
2023-10-17 11:30:51,224 epoch 5 - iter 2166/3617 - loss 0.03718897 - time (sec): 133.64 - samples/sec: 1727.19 - lr: 0.000018 - momentum: 0.000000
|
138 |
+
2023-10-17 11:31:13,996 epoch 5 - iter 2527/3617 - loss 0.03914152 - time (sec): 156.41 - samples/sec: 1708.55 - lr: 0.000018 - momentum: 0.000000
|
139 |
+
2023-10-17 11:31:36,302 epoch 5 - iter 2888/3617 - loss 0.03939405 - time (sec): 178.72 - samples/sec: 1693.34 - lr: 0.000017 - momentum: 0.000000
|
140 |
+
2023-10-17 11:31:58,970 epoch 5 - iter 3249/3617 - loss 0.03829028 - time (sec): 201.38 - samples/sec: 1694.76 - lr: 0.000017 - momentum: 0.000000
|
141 |
+
2023-10-17 11:32:22,708 epoch 5 - iter 3610/3617 - loss 0.03943816 - time (sec): 225.12 - samples/sec: 1683.96 - lr: 0.000017 - momentum: 0.000000
|
142 |
+
2023-10-17 11:32:23,170 ----------------------------------------------------------------------------------------------------
|
143 |
+
2023-10-17 11:32:23,170 EPOCH 5 done: loss 0.0394 - lr: 0.000017
|
144 |
+
2023-10-17 11:32:29,478 DEV : loss 0.29799073934555054 - f1-score (micro avg) 0.6527
|
145 |
+
2023-10-17 11:32:29,521 ----------------------------------------------------------------------------------------------------
|
146 |
+
2023-10-17 11:32:52,384 epoch 6 - iter 361/3617 - loss 0.02573007 - time (sec): 22.86 - samples/sec: 1637.30 - lr: 0.000016 - momentum: 0.000000
|
147 |
+
2023-10-17 11:33:15,775 epoch 6 - iter 722/3617 - loss 0.02511481 - time (sec): 46.25 - samples/sec: 1615.72 - lr: 0.000016 - momentum: 0.000000
|
148 |
+
2023-10-17 11:33:38,654 epoch 6 - iter 1083/3617 - loss 0.02682181 - time (sec): 69.13 - samples/sec: 1631.61 - lr: 0.000016 - momentum: 0.000000
|
149 |
+
2023-10-17 11:34:02,271 epoch 6 - iter 1444/3617 - loss 0.02846690 - time (sec): 92.75 - samples/sec: 1630.95 - lr: 0.000015 - momentum: 0.000000
|
150 |
+
2023-10-17 11:34:25,914 epoch 6 - iter 1805/3617 - loss 0.02838906 - time (sec): 116.39 - samples/sec: 1631.91 - lr: 0.000015 - momentum: 0.000000
|
151 |
+
2023-10-17 11:34:49,761 epoch 6 - iter 2166/3617 - loss 0.02877434 - time (sec): 140.24 - samples/sec: 1626.20 - lr: 0.000015 - momentum: 0.000000
|
152 |
+
2023-10-17 11:35:13,140 epoch 6 - iter 2527/3617 - loss 0.02838507 - time (sec): 163.62 - samples/sec: 1627.41 - lr: 0.000014 - momentum: 0.000000
|
153 |
+
2023-10-17 11:35:35,438 epoch 6 - iter 2888/3617 - loss 0.02895275 - time (sec): 185.92 - samples/sec: 1635.29 - lr: 0.000014 - momentum: 0.000000
|
154 |
+
2023-10-17 11:35:58,001 epoch 6 - iter 3249/3617 - loss 0.02881247 - time (sec): 208.48 - samples/sec: 1636.41 - lr: 0.000014 - momentum: 0.000000
|
155 |
+
2023-10-17 11:36:21,047 epoch 6 - iter 3610/3617 - loss 0.02904294 - time (sec): 231.52 - samples/sec: 1638.64 - lr: 0.000013 - momentum: 0.000000
|
156 |
+
2023-10-17 11:36:21,475 ----------------------------------------------------------------------------------------------------
|
157 |
+
2023-10-17 11:36:21,475 EPOCH 6 done: loss 0.0291 - lr: 0.000013
|
158 |
+
2023-10-17 11:36:27,876 DEV : loss 0.3385041356086731 - f1-score (micro avg) 0.6408
|
159 |
+
2023-10-17 11:36:27,920 ----------------------------------------------------------------------------------------------------
|
160 |
+
2023-10-17 11:36:50,238 epoch 7 - iter 361/3617 - loss 0.01432701 - time (sec): 22.32 - samples/sec: 1700.15 - lr: 0.000013 - momentum: 0.000000
|
161 |
+
2023-10-17 11:37:10,807 epoch 7 - iter 722/3617 - loss 0.01555267 - time (sec): 42.88 - samples/sec: 1756.46 - lr: 0.000013 - momentum: 0.000000
|
162 |
+
2023-10-17 11:37:34,793 epoch 7 - iter 1083/3617 - loss 0.01777501 - time (sec): 66.87 - samples/sec: 1692.09 - lr: 0.000012 - momentum: 0.000000
|
163 |
+
2023-10-17 11:37:56,843 epoch 7 - iter 1444/3617 - loss 0.02027093 - time (sec): 88.92 - samples/sec: 1699.03 - lr: 0.000012 - momentum: 0.000000
|
164 |
+
2023-10-17 11:38:19,092 epoch 7 - iter 1805/3617 - loss 0.01980969 - time (sec): 111.17 - samples/sec: 1702.08 - lr: 0.000012 - momentum: 0.000000
|
165 |
+
2023-10-17 11:38:41,205 epoch 7 - iter 2166/3617 - loss 0.02022525 - time (sec): 133.28 - samples/sec: 1702.67 - lr: 0.000011 - momentum: 0.000000
|
166 |
+
2023-10-17 11:39:04,065 epoch 7 - iter 2527/3617 - loss 0.02165812 - time (sec): 156.14 - samples/sec: 1700.48 - lr: 0.000011 - momentum: 0.000000
|
167 |
+
2023-10-17 11:39:27,133 epoch 7 - iter 2888/3617 - loss 0.02180513 - time (sec): 179.21 - samples/sec: 1692.36 - lr: 0.000011 - momentum: 0.000000
|
168 |
+
2023-10-17 11:39:49,393 epoch 7 - iter 3249/3617 - loss 0.02148273 - time (sec): 201.47 - samples/sec: 1697.80 - lr: 0.000010 - momentum: 0.000000
|
169 |
+
2023-10-17 11:40:11,734 epoch 7 - iter 3610/3617 - loss 0.02149257 - time (sec): 223.81 - samples/sec: 1694.80 - lr: 0.000010 - momentum: 0.000000
|
170 |
+
2023-10-17 11:40:12,185 ----------------------------------------------------------------------------------------------------
|
171 |
+
2023-10-17 11:40:12,186 EPOCH 7 done: loss 0.0216 - lr: 0.000010
|
172 |
+
2023-10-17 11:40:18,549 DEV : loss 0.3538167476654053 - f1-score (micro avg) 0.6501
|
173 |
+
2023-10-17 11:40:18,591 ----------------------------------------------------------------------------------------------------
|
174 |
+
2023-10-17 11:40:40,700 epoch 8 - iter 361/3617 - loss 0.01192797 - time (sec): 22.11 - samples/sec: 1705.35 - lr: 0.000010 - momentum: 0.000000
|
175 |
+
2023-10-17 11:41:03,756 epoch 8 - iter 722/3617 - loss 0.01213621 - time (sec): 45.16 - samples/sec: 1658.34 - lr: 0.000009 - momentum: 0.000000
|
176 |
+
2023-10-17 11:41:27,927 epoch 8 - iter 1083/3617 - loss 0.01286573 - time (sec): 69.33 - samples/sec: 1624.59 - lr: 0.000009 - momentum: 0.000000
|
177 |
+
2023-10-17 11:41:51,754 epoch 8 - iter 1444/3617 - loss 0.01313113 - time (sec): 93.16 - samples/sec: 1629.06 - lr: 0.000009 - momentum: 0.000000
|
178 |
+
2023-10-17 11:42:16,517 epoch 8 - iter 1805/3617 - loss 0.01306628 - time (sec): 117.92 - samples/sec: 1601.35 - lr: 0.000008 - momentum: 0.000000
|
179 |
+
2023-10-17 11:42:41,872 epoch 8 - iter 2166/3617 - loss 0.01391368 - time (sec): 143.28 - samples/sec: 1578.71 - lr: 0.000008 - momentum: 0.000000
|
180 |
+
2023-10-17 11:43:06,573 epoch 8 - iter 2527/3617 - loss 0.01391572 - time (sec): 167.98 - samples/sec: 1569.84 - lr: 0.000008 - momentum: 0.000000
|
181 |
+
2023-10-17 11:43:30,349 epoch 8 - iter 2888/3617 - loss 0.01336401 - time (sec): 191.76 - samples/sec: 1576.08 - lr: 0.000007 - momentum: 0.000000
|
182 |
+
2023-10-17 11:43:51,479 epoch 8 - iter 3249/3617 - loss 0.01320290 - time (sec): 212.89 - samples/sec: 1603.34 - lr: 0.000007 - momentum: 0.000000
|
183 |
+
2023-10-17 11:44:14,085 epoch 8 - iter 3610/3617 - loss 0.01301754 - time (sec): 235.49 - samples/sec: 1610.19 - lr: 0.000007 - momentum: 0.000000
|
184 |
+
2023-10-17 11:44:14,508 ----------------------------------------------------------------------------------------------------
|
185 |
+
2023-10-17 11:44:14,508 EPOCH 8 done: loss 0.0130 - lr: 0.000007
|
186 |
+
2023-10-17 11:44:20,974 DEV : loss 0.3859119117259979 - f1-score (micro avg) 0.6527
|
187 |
+
2023-10-17 11:44:21,026 ----------------------------------------------------------------------------------------------------
|
188 |
+
2023-10-17 11:44:46,418 epoch 9 - iter 361/3617 - loss 0.00859029 - time (sec): 25.39 - samples/sec: 1498.46 - lr: 0.000006 - momentum: 0.000000
|
189 |
+
2023-10-17 11:45:09,053 epoch 9 - iter 722/3617 - loss 0.00920184 - time (sec): 48.02 - samples/sec: 1550.20 - lr: 0.000006 - momentum: 0.000000
|
190 |
+
2023-10-17 11:45:31,985 epoch 9 - iter 1083/3617 - loss 0.00936040 - time (sec): 70.96 - samples/sec: 1569.14 - lr: 0.000006 - momentum: 0.000000
|
191 |
+
2023-10-17 11:45:55,056 epoch 9 - iter 1444/3617 - loss 0.00967607 - time (sec): 94.03 - samples/sec: 1585.73 - lr: 0.000005 - momentum: 0.000000
|
192 |
+
2023-10-17 11:46:18,172 epoch 9 - iter 1805/3617 - loss 0.00907964 - time (sec): 117.14 - samples/sec: 1605.14 - lr: 0.000005 - momentum: 0.000000
|
193 |
+
2023-10-17 11:46:41,668 epoch 9 - iter 2166/3617 - loss 0.00893534 - time (sec): 140.64 - samples/sec: 1607.77 - lr: 0.000005 - momentum: 0.000000
|
194 |
+
2023-10-17 11:47:04,925 epoch 9 - iter 2527/3617 - loss 0.00849365 - time (sec): 163.90 - samples/sec: 1612.69 - lr: 0.000004 - momentum: 0.000000
|
195 |
+
2023-10-17 11:47:28,072 epoch 9 - iter 2888/3617 - loss 0.00835917 - time (sec): 187.04 - samples/sec: 1618.16 - lr: 0.000004 - momentum: 0.000000
|
196 |
+
2023-10-17 11:47:51,051 epoch 9 - iter 3249/3617 - loss 0.00834899 - time (sec): 210.02 - samples/sec: 1619.02 - lr: 0.000004 - momentum: 0.000000
|
197 |
+
2023-10-17 11:48:12,830 epoch 9 - iter 3610/3617 - loss 0.00831963 - time (sec): 231.80 - samples/sec: 1635.73 - lr: 0.000003 - momentum: 0.000000
|
198 |
+
2023-10-17 11:48:13,250 ----------------------------------------------------------------------------------------------------
|
199 |
+
2023-10-17 11:48:13,251 EPOCH 9 done: loss 0.0083 - lr: 0.000003
|
200 |
+
2023-10-17 11:48:19,769 DEV : loss 0.4002314805984497 - f1-score (micro avg) 0.6641
|
201 |
+
2023-10-17 11:48:19,813 saving best model
|
202 |
+
2023-10-17 11:48:20,421 ----------------------------------------------------------------------------------------------------
|
203 |
+
2023-10-17 11:48:42,618 epoch 10 - iter 361/3617 - loss 0.00672252 - time (sec): 22.20 - samples/sec: 1651.90 - lr: 0.000003 - momentum: 0.000000
|
204 |
+
2023-10-17 11:49:05,425 epoch 10 - iter 722/3617 - loss 0.00611528 - time (sec): 45.00 - samples/sec: 1679.01 - lr: 0.000003 - momentum: 0.000000
|
205 |
+
2023-10-17 11:49:28,674 epoch 10 - iter 1083/3617 - loss 0.00518175 - time (sec): 68.25 - samples/sec: 1637.70 - lr: 0.000002 - momentum: 0.000000
|
206 |
+
2023-10-17 11:49:51,468 epoch 10 - iter 1444/3617 - loss 0.00501517 - time (sec): 91.04 - samples/sec: 1652.46 - lr: 0.000002 - momentum: 0.000000
|
207 |
+
2023-10-17 11:50:13,801 epoch 10 - iter 1805/3617 - loss 0.00526015 - time (sec): 113.38 - samples/sec: 1658.65 - lr: 0.000002 - momentum: 0.000000
|
208 |
+
2023-10-17 11:50:33,920 epoch 10 - iter 2166/3617 - loss 0.00556562 - time (sec): 133.50 - samples/sec: 1695.49 - lr: 0.000001 - momentum: 0.000000
|
209 |
+
2023-10-17 11:50:57,467 epoch 10 - iter 2527/3617 - loss 0.00515816 - time (sec): 157.04 - samples/sec: 1674.52 - lr: 0.000001 - momentum: 0.000000
|
210 |
+
2023-10-17 11:51:21,410 epoch 10 - iter 2888/3617 - loss 0.00538365 - time (sec): 180.99 - samples/sec: 1670.23 - lr: 0.000001 - momentum: 0.000000
|
211 |
+
2023-10-17 11:51:44,574 epoch 10 - iter 3249/3617 - loss 0.00546926 - time (sec): 204.15 - samples/sec: 1673.63 - lr: 0.000000 - momentum: 0.000000
|
212 |
+
2023-10-17 11:52:07,470 epoch 10 - iter 3610/3617 - loss 0.00532840 - time (sec): 227.05 - samples/sec: 1670.42 - lr: 0.000000 - momentum: 0.000000
|
213 |
+
2023-10-17 11:52:07,907 ----------------------------------------------------------------------------------------------------
|
214 |
+
2023-10-17 11:52:07,908 EPOCH 10 done: loss 0.0053 - lr: 0.000000
|
215 |
+
2023-10-17 11:52:15,079 DEV : loss 0.4149819612503052 - f1-score (micro avg) 0.6604
|
216 |
+
2023-10-17 11:52:15,631 ----------------------------------------------------------------------------------------------------
|
217 |
+
2023-10-17 11:52:15,632 Loading model from best epoch ...
|
218 |
+
2023-10-17 11:52:17,415 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
|
219 |
+
2023-10-17 11:52:25,444
|
220 |
+
Results:
|
221 |
+
- F-score (micro) 0.6525
|
222 |
+
- F-score (macro) 0.5043
|
223 |
+
- Accuracy 0.498
|
224 |
+
|
225 |
+
By class:
|
226 |
+
precision recall f1-score support
|
227 |
+
|
228 |
+
loc 0.6511 0.7800 0.7098 591
|
229 |
+
pers 0.5768 0.7367 0.6470 357
|
230 |
+
org 0.1774 0.1392 0.1560 79
|
231 |
+
|
232 |
+
micro avg 0.5995 0.7157 0.6525 1027
|
233 |
+
macro avg 0.4684 0.5520 0.5043 1027
|
234 |
+
weighted avg 0.5888 0.7157 0.6454 1027
|
235 |
+
|
236 |
+
2023-10-17 11:52:25,444 ----------------------------------------------------------------------------------------------------
|