|
2023-10-18 00:31:48,574 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 00:31:48,576 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): ElectraModel( |
|
(embeddings): ElectraEmbeddings( |
|
(word_embeddings): Embedding(32001, 768) |
|
(position_embeddings): Embedding(512, 768) |
|
(token_type_embeddings): Embedding(2, 768) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): ElectraEncoder( |
|
(layer): ModuleList( |
|
(0-11): 12 x ElectraLayer( |
|
(attention): ElectraAttention( |
|
(self): ElectraSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): ElectraSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): ElectraIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): ElectraOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=768, out_features=17, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-10-18 00:31:48,576 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 00:31:48,577 MultiCorpus: 20847 train + 1123 dev + 3350 test sentences |
|
- NER_HIPE_2022 Corpus: 20847 train + 1123 dev + 3350 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/de/with_doc_seperator |
|
2023-10-18 00:31:48,577 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 00:31:48,577 Train: 20847 sentences |
|
2023-10-18 00:31:48,577 (train_with_dev=False, train_with_test=False) |
|
2023-10-18 00:31:48,577 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 00:31:48,577 Training Params: |
|
2023-10-18 00:31:48,577 - learning_rate: "5e-05" |
|
2023-10-18 00:31:48,577 - mini_batch_size: "4" |
|
2023-10-18 00:31:48,577 - max_epochs: "10" |
|
2023-10-18 00:31:48,577 - shuffle: "True" |
|
2023-10-18 00:31:48,577 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 00:31:48,577 Plugins: |
|
2023-10-18 00:31:48,578 - TensorboardLogger |
|
2023-10-18 00:31:48,578 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-10-18 00:31:48,578 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 00:31:48,578 Final evaluation on model from best epoch (best-model.pt) |
|
2023-10-18 00:31:48,578 - metric: "('micro avg', 'f1-score')" |
|
2023-10-18 00:31:48,578 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 00:31:48,578 Computation: |
|
2023-10-18 00:31:48,578 - compute on device: cuda:0 |
|
2023-10-18 00:31:48,578 - embedding storage: none |
|
2023-10-18 00:31:48,578 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 00:31:48,578 Model training base path: "hmbench-newseye/de-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4" |
|
2023-10-18 00:31:48,578 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 00:31:48,578 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 00:31:48,579 Logging anything other than scalars to TensorBoard is currently not supported. |
|
2023-10-18 00:32:29,918 epoch 1 - iter 521/5212 - loss 1.66906812 - time (sec): 41.34 - samples/sec: 930.71 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-18 00:33:10,635 epoch 1 - iter 1042/5212 - loss 1.03719361 - time (sec): 82.05 - samples/sec: 909.14 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-18 00:33:51,571 epoch 1 - iter 1563/5212 - loss 0.79777765 - time (sec): 122.99 - samples/sec: 892.20 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-18 00:34:33,364 epoch 1 - iter 2084/5212 - loss 0.66095486 - time (sec): 164.78 - samples/sec: 895.33 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-18 00:35:14,940 epoch 1 - iter 2605/5212 - loss 0.58101719 - time (sec): 206.36 - samples/sec: 885.33 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-18 00:35:56,337 epoch 1 - iter 3126/5212 - loss 0.52357318 - time (sec): 247.76 - samples/sec: 882.27 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-18 00:36:37,849 epoch 1 - iter 3647/5212 - loss 0.47988816 - time (sec): 289.27 - samples/sec: 891.55 - lr: 0.000035 - momentum: 0.000000 |
|
2023-10-18 00:37:19,590 epoch 1 - iter 4168/5212 - loss 0.45555744 - time (sec): 331.01 - samples/sec: 894.11 - lr: 0.000040 - momentum: 0.000000 |
|
2023-10-18 00:38:01,595 epoch 1 - iter 4689/5212 - loss 0.43054978 - time (sec): 373.02 - samples/sec: 889.91 - lr: 0.000045 - momentum: 0.000000 |
|
2023-10-18 00:38:42,289 epoch 1 - iter 5210/5212 - loss 0.41213934 - time (sec): 413.71 - samples/sec: 887.73 - lr: 0.000050 - momentum: 0.000000 |
|
2023-10-18 00:38:42,441 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 00:38:42,442 EPOCH 1 done: loss 0.4120 - lr: 0.000050 |
|
2023-10-18 00:38:50,396 DEV : loss 0.16113218665122986 - f1-score (micro avg) 0.3046 |
|
2023-10-18 00:38:50,458 saving best model |
|
2023-10-18 00:38:51,056 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 00:39:33,061 epoch 2 - iter 521/5212 - loss 0.20391832 - time (sec): 42.00 - samples/sec: 861.95 - lr: 0.000049 - momentum: 0.000000 |
|
2023-10-18 00:40:16,191 epoch 2 - iter 1042/5212 - loss 0.20211911 - time (sec): 85.13 - samples/sec: 855.50 - lr: 0.000049 - momentum: 0.000000 |
|
2023-10-18 00:40:57,547 epoch 2 - iter 1563/5212 - loss 0.19999558 - time (sec): 126.49 - samples/sec: 860.72 - lr: 0.000048 - momentum: 0.000000 |
|
2023-10-18 00:41:39,640 epoch 2 - iter 2084/5212 - loss 0.20513933 - time (sec): 168.58 - samples/sec: 854.18 - lr: 0.000048 - momentum: 0.000000 |
|
2023-10-18 00:42:21,573 epoch 2 - iter 2605/5212 - loss 0.20038286 - time (sec): 210.51 - samples/sec: 863.40 - lr: 0.000047 - momentum: 0.000000 |
|
2023-10-18 00:43:02,141 epoch 2 - iter 3126/5212 - loss 0.19864827 - time (sec): 251.08 - samples/sec: 869.12 - lr: 0.000047 - momentum: 0.000000 |
|
2023-10-18 00:43:42,673 epoch 2 - iter 3647/5212 - loss 0.19854493 - time (sec): 291.61 - samples/sec: 867.61 - lr: 0.000046 - momentum: 0.000000 |
|
2023-10-18 00:44:24,671 epoch 2 - iter 4168/5212 - loss 0.19715426 - time (sec): 333.61 - samples/sec: 878.42 - lr: 0.000046 - momentum: 0.000000 |
|
2023-10-18 00:45:07,789 epoch 2 - iter 4689/5212 - loss 0.19743047 - time (sec): 376.73 - samples/sec: 881.73 - lr: 0.000045 - momentum: 0.000000 |
|
2023-10-18 00:45:48,782 epoch 2 - iter 5210/5212 - loss 0.19494220 - time (sec): 417.72 - samples/sec: 879.26 - lr: 0.000044 - momentum: 0.000000 |
|
2023-10-18 00:45:48,936 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 00:45:48,936 EPOCH 2 done: loss 0.1949 - lr: 0.000044 |
|
2023-10-18 00:46:01,264 DEV : loss 0.1894654929637909 - f1-score (micro avg) 0.3482 |
|
2023-10-18 00:46:01,333 saving best model |
|
2023-10-18 00:46:02,756 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 00:46:44,151 epoch 3 - iter 521/5212 - loss 0.15457492 - time (sec): 41.39 - samples/sec: 873.70 - lr: 0.000044 - momentum: 0.000000 |
|
2023-10-18 00:47:25,991 epoch 3 - iter 1042/5212 - loss 0.14322200 - time (sec): 83.23 - samples/sec: 885.31 - lr: 0.000043 - momentum: 0.000000 |
|
2023-10-18 00:48:06,252 epoch 3 - iter 1563/5212 - loss 0.14225428 - time (sec): 123.49 - samples/sec: 875.22 - lr: 0.000043 - momentum: 0.000000 |
|
2023-10-18 00:48:48,040 epoch 3 - iter 2084/5212 - loss 0.14483257 - time (sec): 165.28 - samples/sec: 888.19 - lr: 0.000042 - momentum: 0.000000 |
|
2023-10-18 00:49:30,204 epoch 3 - iter 2605/5212 - loss 0.14346341 - time (sec): 207.44 - samples/sec: 881.51 - lr: 0.000042 - momentum: 0.000000 |
|
2023-10-18 00:50:12,207 epoch 3 - iter 3126/5212 - loss 0.14044970 - time (sec): 249.45 - samples/sec: 882.67 - lr: 0.000041 - momentum: 0.000000 |
|
2023-10-18 00:50:54,038 epoch 3 - iter 3647/5212 - loss 0.14195401 - time (sec): 291.28 - samples/sec: 887.79 - lr: 0.000041 - momentum: 0.000000 |
|
2023-10-18 00:51:36,494 epoch 3 - iter 4168/5212 - loss 0.14437001 - time (sec): 333.73 - samples/sec: 882.83 - lr: 0.000040 - momentum: 0.000000 |
|
2023-10-18 00:52:18,181 epoch 3 - iter 4689/5212 - loss 0.14670163 - time (sec): 375.42 - samples/sec: 877.15 - lr: 0.000039 - momentum: 0.000000 |
|
2023-10-18 00:53:00,008 epoch 3 - iter 5210/5212 - loss 0.14610716 - time (sec): 417.25 - samples/sec: 880.17 - lr: 0.000039 - momentum: 0.000000 |
|
2023-10-18 00:53:00,154 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 00:53:00,155 EPOCH 3 done: loss 0.1461 - lr: 0.000039 |
|
2023-10-18 00:53:11,968 DEV : loss 0.20233668386936188 - f1-score (micro avg) 0.3894 |
|
2023-10-18 00:53:12,019 saving best model |
|
2023-10-18 00:53:13,437 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 00:53:55,104 epoch 4 - iter 521/5212 - loss 0.11142981 - time (sec): 41.66 - samples/sec: 895.43 - lr: 0.000038 - momentum: 0.000000 |
|
2023-10-18 00:54:39,019 epoch 4 - iter 1042/5212 - loss 0.10715561 - time (sec): 85.58 - samples/sec: 863.93 - lr: 0.000038 - momentum: 0.000000 |
|
2023-10-18 00:55:20,313 epoch 4 - iter 1563/5212 - loss 0.11064029 - time (sec): 126.87 - samples/sec: 878.12 - lr: 0.000037 - momentum: 0.000000 |
|
2023-10-18 00:56:01,136 epoch 4 - iter 2084/5212 - loss 0.11448970 - time (sec): 167.69 - samples/sec: 872.48 - lr: 0.000037 - momentum: 0.000000 |
|
2023-10-18 00:56:41,309 epoch 4 - iter 2605/5212 - loss 0.11567949 - time (sec): 207.87 - samples/sec: 877.17 - lr: 0.000036 - momentum: 0.000000 |
|
2023-10-18 00:57:22,189 epoch 4 - iter 3126/5212 - loss 0.11662647 - time (sec): 248.75 - samples/sec: 881.56 - lr: 0.000036 - momentum: 0.000000 |
|
2023-10-18 00:58:03,052 epoch 4 - iter 3647/5212 - loss 0.11508943 - time (sec): 289.61 - samples/sec: 883.76 - lr: 0.000035 - momentum: 0.000000 |
|
2023-10-18 00:58:45,312 epoch 4 - iter 4168/5212 - loss 0.11455258 - time (sec): 331.87 - samples/sec: 886.66 - lr: 0.000034 - momentum: 0.000000 |
|
2023-10-18 00:59:25,409 epoch 4 - iter 4689/5212 - loss 0.11467035 - time (sec): 371.97 - samples/sec: 887.99 - lr: 0.000034 - momentum: 0.000000 |
|
2023-10-18 01:00:03,308 epoch 4 - iter 5210/5212 - loss 0.11262872 - time (sec): 409.87 - samples/sec: 896.20 - lr: 0.000033 - momentum: 0.000000 |
|
2023-10-18 01:00:03,451 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 01:00:03,452 EPOCH 4 done: loss 0.1126 - lr: 0.000033 |
|
2023-10-18 01:00:15,154 DEV : loss 0.2687111496925354 - f1-score (micro avg) 0.3657 |
|
2023-10-18 01:00:15,206 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 01:00:54,028 epoch 5 - iter 521/5212 - loss 0.07311031 - time (sec): 38.82 - samples/sec: 928.03 - lr: 0.000033 - momentum: 0.000000 |
|
2023-10-18 01:01:34,435 epoch 5 - iter 1042/5212 - loss 0.08017798 - time (sec): 79.23 - samples/sec: 944.73 - lr: 0.000032 - momentum: 0.000000 |
|
2023-10-18 01:02:15,896 epoch 5 - iter 1563/5212 - loss 0.07619780 - time (sec): 120.69 - samples/sec: 945.18 - lr: 0.000032 - momentum: 0.000000 |
|
2023-10-18 01:02:56,684 epoch 5 - iter 2084/5212 - loss 0.07909195 - time (sec): 161.48 - samples/sec: 924.66 - lr: 0.000031 - momentum: 0.000000 |
|
2023-10-18 01:03:37,694 epoch 5 - iter 2605/5212 - loss 0.08215076 - time (sec): 202.49 - samples/sec: 918.77 - lr: 0.000031 - momentum: 0.000000 |
|
2023-10-18 01:04:18,619 epoch 5 - iter 3126/5212 - loss 0.08334033 - time (sec): 243.41 - samples/sec: 920.85 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-18 01:04:59,547 epoch 5 - iter 3647/5212 - loss 0.08207112 - time (sec): 284.34 - samples/sec: 917.40 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-18 01:05:40,848 epoch 5 - iter 4168/5212 - loss 0.08331101 - time (sec): 325.64 - samples/sec: 913.88 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-18 01:06:20,943 epoch 5 - iter 4689/5212 - loss 0.08261802 - time (sec): 365.73 - samples/sec: 912.70 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-18 01:07:01,129 epoch 5 - iter 5210/5212 - loss 0.08358709 - time (sec): 405.92 - samples/sec: 905.02 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-18 01:07:01,270 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 01:07:01,271 EPOCH 5 done: loss 0.0836 - lr: 0.000028 |
|
2023-10-18 01:07:12,187 DEV : loss 0.301369845867157 - f1-score (micro avg) 0.3742 |
|
2023-10-18 01:07:12,250 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 01:07:54,992 epoch 6 - iter 521/5212 - loss 0.06866396 - time (sec): 42.74 - samples/sec: 896.81 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-18 01:08:36,567 epoch 6 - iter 1042/5212 - loss 0.06896073 - time (sec): 84.31 - samples/sec: 882.54 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-18 01:09:16,846 epoch 6 - iter 1563/5212 - loss 0.06751622 - time (sec): 124.59 - samples/sec: 906.02 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-18 01:09:57,387 epoch 6 - iter 2084/5212 - loss 0.06455834 - time (sec): 165.13 - samples/sec: 914.12 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-18 01:10:38,142 epoch 6 - iter 2605/5212 - loss 0.06669693 - time (sec): 205.89 - samples/sec: 905.24 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-18 01:11:18,567 epoch 6 - iter 3126/5212 - loss 0.06865838 - time (sec): 246.31 - samples/sec: 891.57 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-18 01:12:00,376 epoch 6 - iter 3647/5212 - loss 0.06873425 - time (sec): 288.12 - samples/sec: 886.06 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-18 01:12:43,940 epoch 6 - iter 4168/5212 - loss 0.06803666 - time (sec): 331.69 - samples/sec: 877.70 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-18 01:13:25,958 epoch 6 - iter 4689/5212 - loss 0.06603815 - time (sec): 373.71 - samples/sec: 881.12 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-18 01:14:07,418 epoch 6 - iter 5210/5212 - loss 0.06522923 - time (sec): 415.17 - samples/sec: 884.91 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-18 01:14:07,588 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 01:14:07,588 EPOCH 6 done: loss 0.0652 - lr: 0.000022 |
|
2023-10-18 01:14:18,954 DEV : loss 0.36671698093414307 - f1-score (micro avg) 0.3549 |
|
2023-10-18 01:14:19,009 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 01:15:01,826 epoch 7 - iter 521/5212 - loss 0.03359695 - time (sec): 42.81 - samples/sec: 885.06 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-18 01:15:44,187 epoch 7 - iter 1042/5212 - loss 0.03709266 - time (sec): 85.17 - samples/sec: 872.76 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-18 01:16:24,595 epoch 7 - iter 1563/5212 - loss 0.04253411 - time (sec): 125.58 - samples/sec: 864.90 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-18 01:17:05,737 epoch 7 - iter 2084/5212 - loss 0.04345550 - time (sec): 166.73 - samples/sec: 867.32 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-18 01:17:47,521 epoch 7 - iter 2605/5212 - loss 0.04796044 - time (sec): 208.51 - samples/sec: 871.07 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-18 01:18:28,730 epoch 7 - iter 3126/5212 - loss 0.04973625 - time (sec): 249.72 - samples/sec: 866.88 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-18 01:19:10,790 epoch 7 - iter 3647/5212 - loss 0.04988937 - time (sec): 291.78 - samples/sec: 871.16 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-18 01:19:53,123 epoch 7 - iter 4168/5212 - loss 0.04833380 - time (sec): 334.11 - samples/sec: 886.96 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-18 01:20:33,853 epoch 7 - iter 4689/5212 - loss 0.04815110 - time (sec): 374.84 - samples/sec: 881.91 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-18 01:21:14,383 epoch 7 - iter 5210/5212 - loss 0.04638672 - time (sec): 415.37 - samples/sec: 884.32 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-18 01:21:14,530 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 01:21:14,530 EPOCH 7 done: loss 0.0464 - lr: 0.000017 |
|
2023-10-18 01:21:25,727 DEV : loss 0.43325743079185486 - f1-score (micro avg) 0.3587 |
|
2023-10-18 01:21:25,783 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 01:22:07,559 epoch 8 - iter 521/5212 - loss 0.04888283 - time (sec): 41.77 - samples/sec: 868.38 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-18 01:22:51,475 epoch 8 - iter 1042/5212 - loss 0.05588160 - time (sec): 85.69 - samples/sec: 853.90 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-18 01:23:30,474 epoch 8 - iter 1563/5212 - loss 0.04998288 - time (sec): 124.69 - samples/sec: 860.88 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-18 01:24:11,992 epoch 8 - iter 2084/5212 - loss 0.04736604 - time (sec): 166.21 - samples/sec: 860.69 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-18 01:24:54,218 epoch 8 - iter 2605/5212 - loss 0.04423360 - time (sec): 208.43 - samples/sec: 861.12 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-18 01:25:36,727 epoch 8 - iter 3126/5212 - loss 0.04220802 - time (sec): 250.94 - samples/sec: 867.37 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-18 01:26:21,477 epoch 8 - iter 3647/5212 - loss 0.03990034 - time (sec): 295.69 - samples/sec: 871.35 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-18 01:27:07,438 epoch 8 - iter 4168/5212 - loss 0.03988533 - time (sec): 341.65 - samples/sec: 864.12 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-18 01:27:50,105 epoch 8 - iter 4689/5212 - loss 0.03847361 - time (sec): 384.32 - samples/sec: 859.02 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-18 01:28:33,305 epoch 8 - iter 5210/5212 - loss 0.03727021 - time (sec): 427.52 - samples/sec: 858.96 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-18 01:28:33,460 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 01:28:33,460 EPOCH 8 done: loss 0.0373 - lr: 0.000011 |
|
2023-10-18 01:28:44,615 DEV : loss 0.4129716157913208 - f1-score (micro avg) 0.3669 |
|
2023-10-18 01:28:44,677 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 01:29:29,811 epoch 9 - iter 521/5212 - loss 0.01869215 - time (sec): 45.13 - samples/sec: 865.28 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-18 01:30:11,850 epoch 9 - iter 1042/5212 - loss 0.02072276 - time (sec): 87.17 - samples/sec: 861.21 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-18 01:30:55,037 epoch 9 - iter 1563/5212 - loss 0.02156431 - time (sec): 130.36 - samples/sec: 845.78 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-18 01:31:38,177 epoch 9 - iter 2084/5212 - loss 0.02107749 - time (sec): 173.50 - samples/sec: 833.83 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-18 01:32:20,284 epoch 9 - iter 2605/5212 - loss 0.02033570 - time (sec): 215.60 - samples/sec: 833.24 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-18 01:33:00,969 epoch 9 - iter 3126/5212 - loss 0.02020637 - time (sec): 256.29 - samples/sec: 847.42 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-18 01:33:41,854 epoch 9 - iter 3647/5212 - loss 0.02018397 - time (sec): 297.17 - samples/sec: 856.84 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-18 01:34:24,795 epoch 9 - iter 4168/5212 - loss 0.01967850 - time (sec): 340.12 - samples/sec: 863.34 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-18 01:35:06,699 epoch 9 - iter 4689/5212 - loss 0.01954663 - time (sec): 382.02 - samples/sec: 864.64 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-18 01:35:47,910 epoch 9 - iter 5210/5212 - loss 0.01998115 - time (sec): 423.23 - samples/sec: 867.76 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-18 01:35:48,061 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 01:35:48,061 EPOCH 9 done: loss 0.0200 - lr: 0.000006 |
|
2023-10-18 01:36:00,418 DEV : loss 0.4562455713748932 - f1-score (micro avg) 0.3877 |
|
2023-10-18 01:36:00,486 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 01:36:44,282 epoch 10 - iter 521/5212 - loss 0.01029065 - time (sec): 43.79 - samples/sec: 856.77 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-18 01:37:26,680 epoch 10 - iter 1042/5212 - loss 0.01334978 - time (sec): 86.19 - samples/sec: 866.79 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-18 01:38:06,606 epoch 10 - iter 1563/5212 - loss 0.01386083 - time (sec): 126.12 - samples/sec: 869.64 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-18 01:38:46,290 epoch 10 - iter 2084/5212 - loss 0.01335369 - time (sec): 165.80 - samples/sec: 867.67 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-18 01:39:27,175 epoch 10 - iter 2605/5212 - loss 0.01357185 - time (sec): 206.69 - samples/sec: 888.86 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-18 01:40:07,806 epoch 10 - iter 3126/5212 - loss 0.01324602 - time (sec): 247.32 - samples/sec: 893.64 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-18 01:40:48,240 epoch 10 - iter 3647/5212 - loss 0.01325955 - time (sec): 287.75 - samples/sec: 904.07 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-18 01:41:28,545 epoch 10 - iter 4168/5212 - loss 0.01305894 - time (sec): 328.06 - samples/sec: 901.55 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-18 01:42:08,664 epoch 10 - iter 4689/5212 - loss 0.01288314 - time (sec): 368.18 - samples/sec: 897.88 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-18 01:42:48,729 epoch 10 - iter 5210/5212 - loss 0.01314818 - time (sec): 408.24 - samples/sec: 899.94 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-18 01:42:48,862 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 01:42:48,862 EPOCH 10 done: loss 0.0131 - lr: 0.000000 |
|
2023-10-18 01:43:00,991 DEV : loss 0.47269320487976074 - f1-score (micro avg) 0.3881 |
|
2023-10-18 01:43:01,627 ---------------------------------------------------------------------------------------------------- |
|
2023-10-18 01:43:01,629 Loading model from best epoch ... |
|
2023-10-18 01:43:04,487 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd |
|
2023-10-18 01:43:23,620 |
|
Results: |
|
- F-score (micro) 0.3373 |
|
- F-score (macro) 0.219 |
|
- Accuracy 0.2047 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
LOC 0.4867 0.3624 0.4155 1214 |
|
PER 0.3677 0.2426 0.2923 808 |
|
ORG 0.2075 0.1416 0.1684 353 |
|
HumanProd 0.0000 0.0000 0.0000 15 |
|
|
|
micro avg 0.4088 0.2870 0.3373 2390 |
|
macro avg 0.2655 0.1867 0.2190 2390 |
|
weighted avg 0.4022 0.2870 0.3347 2390 |
|
|
|
2023-10-18 01:43:23,620 ---------------------------------------------------------------------------------------------------- |
|
|