File size: 17,323 Bytes
65b7504 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
# From https://github.com/facebookresearch/llama/blob/main/llama/model.py
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from torch.nn.functional import scaled_dot_product_attention
from typing import Optional
import numpy as np
from xformers.ops import SwiGLU
try:
from flash_attn.flash_attn_interface import flash_attn_varlen_func
FLASH_ATTN_AVAILABLE = True
except ImportError:
FLASH_ATTN_AVAILABLE = False
from transformers import (
PreTrainedModel,
PretrainedConfig,
DataCollatorForLanguageModeling,
)
from transformers.modeling_outputs import (
BaseModelOutput,
MaskedLMOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from .rotary import precompute_freqs_cis, apply_rotary_emb
class DataCollatorWithPacking(DataCollatorForLanguageModeling):
def __init__(self, pack_sequences=False, **kwargs):
super().__init__(**kwargs)
self.pack_sequences = pack_sequences
def __call__(self, batch):
if self.pack_sequences:
# Add position_ids if not present
if "position_ids" not in batch[0]:
for item in batch:
item["position_ids"] = list(range(len(item["input_ids"])))
# Pack the sequences into a single list
input_ids_list = [item["input_ids"] for item in batch]
position_ids_list = [item["position_ids"] for item in batch]
seqlens = np.array([0] + [len(ids) for ids in input_ids_list])
packed_batch = {
"position_ids": np.concatenate(position_ids_list, axis=0),
"input_ids": np.concatenate(input_ids_list, axis=0),
"cu_seqlens": np.cumsum(seqlens),
"max_seqlen": max(seqlens),
}
batch = super().__call__([packed_batch])
batch["cu_seqlens"] = batch["cu_seqlens"].to(torch.int32).squeeze()
else:
batch = super().__call__(batch)
batch["attention_mask"] = batch["attention_mask"].to(torch.bool)
return batch
class NeoBERTConfig(PretrainedConfig):
model_type = "neobert"
# All config parameters must have a default value.
def __init__(
self,
hidden_size: int = 768,
num_hidden_layers: int = 28,
num_attention_heads: int = 12,
intermediate_size: int = 3072,
embedding_init_range: float = 0.02,
decoder_init_range: float = 0.02,
norm_eps: float = 1e-06,
vocab_size: int = 30522,
pad_token_id: int = 0,
max_length: int = 1024,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
if hidden_size % num_attention_heads != 0:
raise ValueError("Hidden size must be divisible by the number of heads.")
self.dim_head = hidden_size // num_attention_heads
self.intermediate_size = intermediate_size
self.embedding_init_range = embedding_init_range
self.decoder_init_range = decoder_init_range
self.norm_eps = norm_eps
self.vocab_size = vocab_size
self.pad_token_id = pad_token_id
self.max_length = max_length
self.kwargs = kwargs
class EncoderBlock(nn.Module):
"""Transformer encoder block."""
def __init__(self, config: NeoBERTConfig):
super().__init__()
self.config = config
# Attention
self.qkv = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size * 3, bias=False)
self.wo = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=False)
# Feedforward network
multiple_of = 8
intermediate_size = int(2 * config.intermediate_size / 3)
intermediate_size = multiple_of * ((intermediate_size + multiple_of - 1) // multiple_of)
self.ffn = SwiGLU(config.hidden_size, intermediate_size, config.hidden_size, bias=False)
# Layer norms
self.attention_norm = nn.RMSNorm(config.hidden_size, config.norm_eps)
self.ffn_norm = nn.RMSNorm(config.hidden_size, config.norm_eps)
def forward(
self,
x: torch.Tensor,
attention_mask: torch.Tensor,
freqs_cis: torch.Tensor,
output_attentions: bool,
max_seqlen: int = None,
cu_seqlens: torch.Tensor = None,
):
# Attention
attn_output, attn_weights = self._att_block(
self.attention_norm(x), attention_mask, freqs_cis, output_attentions, max_seqlen, cu_seqlens
)
# Residual
x = x + attn_output
# Feed-forward
x = x + self.ffn(self.ffn_norm(x))
return x, attn_weights
def _att_block(
self,
x: torch.Tensor,
attention_mask: torch.Tensor,
freqs_cis: torch.Tensor,
output_attentions: bool,
max_seqlen: int = None,
cu_seqlens: torch.Tensor = None,
):
batch_size, seq_len, _ = x.shape
xq, xk, xv = self.qkv(x).view(batch_size, seq_len, self.config.num_attention_heads, self.config.dim_head * 3).chunk(3, axis=-1)
xq, xk = apply_rotary_emb(xq, xk, freqs_cis)
# Attn block
attn_weights = None
# Flash attention if the tensors are packed
if cu_seqlens is not None:
attn = flash_attn_varlen_func(
q=xq.squeeze(0),
k=xk.squeeze(0),
v=xv.squeeze(0),
cu_seqlens_q=cu_seqlens,
cu_seqlens_k=cu_seqlens,
max_seqlen_q=max_seqlen,
max_seqlen_k=max_seqlen,
dropout_p=0.0,
causal=False,
)
# Eager attention if attention weights are needed in the output
elif output_attentions:
attn_weights = xq.permute(0, 2, 1, 3) @ xk.permute(0, 2, 3, 1) / (xq.size(-1) ** 0.5)
if attention_mask is not None:
attn_weights = attn_weights * attention_mask
attn_weights = attn_weights.softmax(-1)
attn = attn_weights @ xv.permute(0, 2, 1, 3)
attn = attn.transpose(1, 2)
# Fall back to SDPA otherwise
else:
attn = scaled_dot_product_attention(
query=xq.transpose(1, 2),
key=xk.transpose(1, 2),
value=xv.transpose(1, 2),
attn_mask=attention_mask.bool(),
dropout_p=0,
).transpose(1, 2)
return self.wo(attn.reshape(batch_size, seq_len, self.config.num_attention_heads * self.config.dim_head)), attn_weights
class NeoBERTPreTrainedModel(PreTrainedModel):
config_class = NeoBERTConfig
base_model_prefix = "model"
_supports_cache_class = True
def _init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data.uniform_(-self.config.decoder_init_range, self.config.decoder_init_range)
elif isinstance(module, nn.Embedding):
module.weight.data.uniform_(-self.config.embedding_init_range, self.config.embedding_init_range)
class NeoBERT(NeoBERTPreTrainedModel):
config_class = NeoBERTConfig
def __init__(self, config: NeoBERTConfig):
super().__init__(config)
self.config = config
self.encoder = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
# Ensures freqs_cis is moved to the same devices as the model. Non-persistent buffers are not saved in the state_dict.
freqs_cis = precompute_freqs_cis(config.hidden_size // config.num_attention_heads, config.max_length)
self.register_buffer("freqs_cis", freqs_cis, persistent=False)
self.transformer_encoder = nn.ModuleList()
for _ in range(config.num_hidden_layers):
self.transformer_encoder.append(EncoderBlock(config))
self.layer_norm = nn.RMSNorm(config.hidden_size, config.norm_eps)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor = None,
max_seqlen: int = None,
cu_seqlens: torch.Tensor = None,
attention_mask: torch.Tensor = None,
output_hidden_states: bool = False,
output_attentions: bool = False,
**kwargs,
):
# Initialize
hidden_states, attentions = [], []
# Expand and repeat: (Batch, Length) -> (Batch, Heads, Length, Length)
if attention_mask is not None:
attention_mask = attention_mask.unsqueeze(1).unsqueeze(1).repeat(1, self.config.num_attention_heads, attention_mask.size(-1), 1)
# Checks to be done if inputs are packed sequences
if cu_seqlens is not None:
assert (
FLASH_ATTN_AVAILABLE
), "Flash-attention is not available. Please ''pip install flash_attn'', or provide un-packed sequences."
assert not output_attentions, "Output attentions is not supported when sequences are packed."
assert max_seqlen is not None, "Missing max_seqlen. It must be provided when cu_seqlens are not None."
assert input_ids.shape[0] == 1, "Cumulative sequence lengths are provided but input_ids are not packed."
assert input_ids.is_cuda, "Packing uses an implementation of flash-attention and is only supported on GPU."
# RoPE
freqs_cis = self.freqs_cis[position_ids] if position_ids is not None else self.freqs_cis[: input_ids.shape[1]].unsqueeze(0)
# Embedding
x = self.encoder(input_ids)
# Transformer encoder
for layer in self.transformer_encoder:
x, attn = layer(x, attention_mask, freqs_cis, output_attentions, max_seqlen, cu_seqlens)
if output_hidden_states:
hidden_states.append(x)
if output_attentions:
attentions.append(attn)
# Final normalization layer
x = self.layer_norm(x)
# Return the output of the last hidden layer
return BaseModelOutput(
last_hidden_state=x,
hidden_states=hidden_states if output_hidden_states else None,
attentions=attentions if output_attentions else None,
)
class NeoBERTLMHead(NeoBERTPreTrainedModel):
config_class = NeoBERTConfig
def __init__(self, config: NeoBERTConfig):
super().__init__(config)
self.config = config
self.model = NeoBERT(config)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
self.post_init()
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor = None,
max_seqlen: int = None,
cu_seqlens: torch.Tensor = None,
attention_mask: torch.Tensor = None,
output_hidden_states: bool = False,
output_attentions: bool = False,
**kwargs,
):
output = self.model.forward(
input_ids,
position_ids,
max_seqlen,
cu_seqlens,
attention_mask,
output_hidden_states,
output_attentions,
)
logits = self.decoder(output.last_hidden_state)
return MaskedLMOutput(
hidden_states=output.hidden_states if output_hidden_states else None,
attentions=output.attentions if output_attentions else None,
logits=logits,
)
class NeoBERTForSequenceClassification(NeoBERTPreTrainedModel):
config_class = NeoBERTConfig
def __init__(self, config: NeoBERTConfig):
super().__init__(config)
self.config = config
self.num_labels = getattr(config, "num_labels", 2)
self.classifier_dropout = getattr(config, "classifier_dropout", 0.1)
self.classifier_init_range = getattr(config, "classifier_init_range", 0.02)
self.model = NeoBERT(config)
self.dense = nn.Linear(self.config.hidden_size, self.config.hidden_size)
self.dropout = nn.Dropout(self.classifier_dropout)
self.classifier = nn.Linear(self.config.hidden_size, self.num_labels)
self.post_init()
def _init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.classifier_init_range)
if module.bias is not None:
module.bias.data.zero_()
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor = None,
max_seqlen: int = None,
cu_seqlens: torch.Tensor = None,
attention_mask: torch.Tensor = None,
output_hidden_states: bool = False,
output_attentions: bool = False,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
):
output = self.model.forward(
input_ids,
position_ids,
max_seqlen,
cu_seqlens,
attention_mask,
output_hidden_states,
output_attentions,
)
hidden_states = output.last_hidden_state
x = hidden_states[:, 0, :]
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
logits = self.classifier(x)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
result = (logits,)
return ((loss,) + result) if loss is not None else result
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=output.hidden_states if output_hidden_states else None,
attentions=output.attentions if output_attentions else None,
)
class NeoBERTForTokenClassification(NeoBERTPreTrainedModel):
config_class = NeoBERTConfig
def __init__(self, config: NeoBERTConfig):
super().__init__(config)
self.config = config
self.num_labels = getattr(config, "num_labels", 2)
self.classifier_dropout = getattr(config, "classifier_dropout", 0.1)
self.classifier_init_range = getattr(config, "classifier_init_range", 0.02)
self.model = NeoBERT(config)
self.dense = nn.Linear(self.config.hidden_size, self.config.hidden_size)
self.dropout = nn.Dropout(self.classifier_dropout)
self.classifier = nn.Linear(self.config.hidden_size, self.num_labels)
self.post_init()
def _init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.classifier_init_range)
if module.bias is not None:
module.bias.data.zero_()
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor = None,
max_seqlen: int = None,
cu_seqlens: torch.Tensor = None,
attention_mask: torch.Tensor = None,
output_hidden_states: bool = False,
output_attentions: bool = False,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
):
output = self.model.forward(
input_ids,
position_ids,
max_seqlen,
cu_seqlens,
attention_mask,
output_hidden_states,
output_attentions,
)
x = output.last_hidden_state
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
logits = self.classifier(x)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
result = (logits,) + output[1:]
return ((loss,) + result) if loss is not None else result
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=output.hidden_states if output_hidden_states else None,
attentions=output.attentions if output_attentions else None,
)
|