stefan-it commited on
Commit
3ca367c
·
verified ·
1 Parent(s): 5324d02

readme: add initial version

Browse files
Files changed (1) hide show
  1. README.md +53 -1
README.md CHANGED
@@ -8,4 +8,56 @@ base_model:
8
  - chandar-lab/NeoBERT
9
  tags:
10
  - ner
11
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  - chandar-lab/NeoBERT
9
  tags:
10
  - ner
11
+ ---
12
+
13
+ # ✨ NeoBERT for NER
14
+
15
+ This repository hosts an NeoBERT model that was fine-tuned on the CoNLL-2003 NER dataset.
16
+
17
+ Please notice the following caveats:
18
+
19
+ * ⚠️ Work in progress, as e.g. new hyper-parameter changes or bug fixes for the implemented `NeoBERTForTokenClassification` class can occur.
20
+ * ⚠️ At the moment, don't expect BERT-like performance, more experiments are needed
21
+
22
+ ## 📝 Implementation
23
+
24
+ An own `NeoBERTForTokenClassification` class was implemented to conduct experiments with Transformers.
25
+
26
+ For all experiments, Transformers in version `4.50.0.dev0` is currently used including a recent built of `xFormers`, as NeoBERT depends on that for the `SwiGLU` implementation.
27
+
28
+ For following code (based on the [PyTorch Token Classification example](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification)
29
+ can be used for fine-tuning:
30
+
31
+ ```bash
32
+ python3 run_ner.py \
33
+ --model_name_or_path /home/stefan/Repositories/NeoBERT \
34
+ --dataset_name conll2003 \
35
+ --output_dir ./neobert-conll2003-lr1e-05-e10-bs16-1 \
36
+ --seed 1 \
37
+ --do_train \
38
+ --do_eval \
39
+ --per_device_train_batch_size 16 \
40
+ --num_train_epochs 10 \
41
+ --learning_rate 1e-05 \
42
+ --eval_strategy epoch \
43
+ --save_strategy epoch \
44
+ --overwrite_output_dir \
45
+ --trust_remote_code True \
46
+ --load_best_model_at_end \
47
+ --metric_for_best_model "eval_f1" \
48
+ --greater_is_better True
49
+ ```
50
+
51
+ ## 📊 Performance
52
+
53
+ A very basic hyper-parameter search is performanced for five different seeds, with reported averaged micro F1-Score on the development set of CoNLL-2003:
54
+
55
+ | Configuration | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Avg. |
56
+ |:--------------------- | ---------:| -----:| -----:| -----:| -----:| -----:|
57
+ | `bs=16,e=10,lr=1e-05` | **95.71** | 95.42 | 95.53 | 95.56 | 95.43 | 95.53 |
58
+ | `bs=16,e=10,lr=2e-05` | 95.25 | 95.33 | 95.28 | 95.35 | 95.26 | 95.29 |
59
+ | `bs=16,e=10,lr=3e-05` | 94.98 | 95.22 | 94.86 | 94.72 | 94.93 | 94.94 |
60
+ | `bs=16,e=10,lr=4e-05` | 94.61 | 94.39 | 94.57 | 94.65 | 94.87 | 94.61 |
61
+ | `bs=16,e=10,lr=5e-05` | 93.82 | 93.94 | 94.36 | 91.14 | 94.38 | 94.15 |
62
+
63
+ The performance of the current uploaded model is marked in bold.