--- license: apache-2.0 datasets: - eriktks/conll2003 language: - en base_model: - chandar-lab/NeoBERT tags: - ner --- # ✨ NeoBERT for NER This repository hosts an NeoBERT model that was fine-tuned on the CoNLL-2003 NER dataset. Please notice the following caveats: * ⚠️ Work in progress, as e.g. new hyper-parameter changes or bug fixes for the implemented `NeoBERTForTokenClassification` class can occur. * ⚠️ At the moment, don't expect BERT-like performance, more experiments are needed. (Is RoPE causing this?) ## 📝 Implementation An own `NeoBERTForTokenClassification` class was implemented to conduct experiments with Transformers. For all experiments, Transformers in version `4.50.0.dev0` is currently used including a recent built of `xFormers`, as NeoBERT depends on that for the `SwiGLU` implementation. For following code (based on the [PyTorch Token Classification example](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification) can be used for fine-tuning: ```bash python3 run_ner.py \ --model_name_or_path /home/stefan/Repositories/NeoBERT \ --dataset_name conll2003 \ --output_dir ./neobert-conll2003-lr1e-05-e10-bs16-1 \ --seed 1 \ --do_train \ --do_eval \ --per_device_train_batch_size 16 \ --num_train_epochs 10 \ --learning_rate 1e-05 \ --eval_strategy epoch \ --save_strategy epoch \ --overwrite_output_dir \ --trust_remote_code True \ --load_best_model_at_end \ --metric_for_best_model "eval_f1" \ --greater_is_better True ``` ## 📊 Performance A very basic hyper-parameter search is performanced for five different seeds, with reported averaged micro F1-Score on the development set of CoNLL-2003: | Configuration | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Avg. | |:--------------------- | ---------:| -----:| -----:| -----:| -----:| -----:| | `bs=16,e=10,lr=1e-05` | **95.71** | 95.42 | 95.53 | 95.56 | 95.43 | 95.53 | | `bs=16,e=10,lr=2e-05` | 95.25 | 95.33 | 95.28 | 95.35 | 95.26 | 95.29 | | `bs=16,e=10,lr=3e-05` | 94.98 | 95.22 | 94.86 | 94.72 | 94.93 | 94.94 | | `bs=16,e=10,lr=4e-05` | 94.61 | 94.39 | 94.57 | 94.65 | 94.87 | 94.61 | | `bs=16,e=10,lr=5e-05` | 93.82 | 93.94 | 94.36 | 91.14 | 94.38 | 94.15 | The performance of the current uploaded model is marked in bold. ## 📣 Usage The following code can be used to test the model and recognize named entities for a given sentence: ```python from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer model_name = "stefan-it/neobert-ner-conll03" model = AutoModelForTokenClassification.from_pretrained(model_name, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) ner = pipeline(task="ner", model=model, tokenizer=tokenizer, trust_remote_code=True) print(ner("George Washington went to Washington in the US.")) ``` This outputs: ```json [ {'entity': 'B-PER', 'score': 0.99981505, 'index': 1, 'word': 'george', 'start': 0, 'end': 6}, {'entity': 'I-PER', 'score': 0.9997435, 'index': 2, 'word': 'washington', 'start': 7, 'end': 17}, {'entity': 'B-LOC', 'score': 0.99955124, 'index': 5, 'word': 'washington', 'start': 26, 'end': 36}, {'entity': 'B-LOC', 'score': 0.99958867, 'index': 8, 'word': 'us', 'start': 44, 'end': 46} ] ```