File size: 14,312 Bytes
8af0d0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""

import cv2
import numpy as np

import torch

# from omegaconf import OmegaConf
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from PIL import Image

class BaseProcessor:
    def __init__(self):
        self.transform = lambda x: x
        return

    def __call__(self, item):
        return self.transform(item)

    # @classmethod
    # def from_config(cls, cfg=None):
    #     return cls()

    # def build(self, **kwargs):
    #     cfg = OmegaConf.create(kwargs)

    #     return self.from_config(cfg)

class BlipImageBaseProcessor(BaseProcessor):
    def __init__(self, mean=None, std=None):
        if mean is None:
            mean = (0.48145466, 0.4578275, 0.40821073)
        if std is None:
            std = (0.26862954, 0.26130258, 0.27577711)
        # mean = (0.0, 0.0, 0.0)
        # std = (1.0, 1.0, 1.0)

        self.normalize = transforms.Normalize(mean, std)


## aug functions
def identity_func(img):
    return img


def autocontrast_func(img, cutoff=0):
    """
    same output as PIL.ImageOps.autocontrast
    """
    n_bins = 256

    def tune_channel(ch):
        n = ch.size
        cut = cutoff * n // 100
        if cut == 0:
            high, low = ch.max(), ch.min()
        else:
            hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins])
            low = np.argwhere(np.cumsum(hist) > cut)
            low = 0 if low.shape[0] == 0 else low[0]
            high = np.argwhere(np.cumsum(hist[::-1]) > cut)
            high = n_bins - 1 if high.shape[0] == 0 else n_bins - 1 - high[0]
        if high <= low:
            table = np.arange(n_bins)
        else:
            scale = (n_bins - 1) / (high - low)
            offset = -low * scale
            table = np.arange(n_bins) * scale + offset
            table[table < 0] = 0
            table[table > n_bins - 1] = n_bins - 1
        table = table.clip(0, 255).astype(np.uint8)
        return table[ch]

    channels = [tune_channel(ch) for ch in cv2.split(img)]
    out = cv2.merge(channels)
    return out


def equalize_func(img):
    """
    same output as PIL.ImageOps.equalize
    PIL's implementation is different from cv2.equalize
    """
    n_bins = 256

    def tune_channel(ch):
        hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins])
        non_zero_hist = hist[hist != 0].reshape(-1)
        step = np.sum(non_zero_hist[:-1]) // (n_bins - 1)
        if step == 0:
            return ch
        n = np.empty_like(hist)
        n[0] = step // 2
        n[1:] = hist[:-1]
        table = (np.cumsum(n) // step).clip(0, 255).astype(np.uint8)
        return table[ch]

    channels = [tune_channel(ch) for ch in cv2.split(img)]
    out = cv2.merge(channels)
    return out


def rotate_func(img, degree, fill=(0, 0, 0)):
    """
    like PIL, rotate by degree, not radians
    """
    H, W = img.shape[0], img.shape[1]
    center = W / 2, H / 2
    M = cv2.getRotationMatrix2D(center, degree, 1)
    out = cv2.warpAffine(img, M, (W, H), borderValue=fill)
    return out


def solarize_func(img, thresh=128):
    """
    same output as PIL.ImageOps.posterize
    """
    table = np.array([el if el < thresh else 255 - el for el in range(256)])
    table = table.clip(0, 255).astype(np.uint8)
    out = table[img]
    return out


def color_func(img, factor):
    """
    same output as PIL.ImageEnhance.Color
    """
    ## implementation according to PIL definition, quite slow
    #  degenerate = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[:, :, np.newaxis]
    #  out = blend(degenerate, img, factor)
    #  M = (
    #      np.eye(3) * factor
    #      + np.float32([0.114, 0.587, 0.299]).reshape(3, 1) * (1. - factor)
    #  )[np.newaxis, np.newaxis, :]
    M = np.float32(
        [[0.886, -0.114, -0.114], [-0.587, 0.413, -0.587], [-0.299, -0.299, 0.701]]
    ) * factor + np.float32([[0.114], [0.587], [0.299]])
    out = np.matmul(img, M).clip(0, 255).astype(np.uint8)
    return out


def contrast_func(img, factor):
    """
    same output as PIL.ImageEnhance.Contrast
    """
    mean = np.sum(np.mean(img, axis=(0, 1)) * np.array([0.114, 0.587, 0.299]))
    table = (
        np.array([(el - mean) * factor + mean for el in range(256)])
        .clip(0, 255)
        .astype(np.uint8)
    )
    out = table[img]
    return out


def brightness_func(img, factor):
    """
    same output as PIL.ImageEnhance.Contrast
    """
    table = (np.arange(256, dtype=np.float32) * factor).clip(0, 255).astype(np.uint8)
    out = table[img]
    return out


def sharpness_func(img, factor):
    """
    The differences the this result and PIL are all on the 4 boundaries, the center
    areas are same
    """
    kernel = np.ones((3, 3), dtype=np.float32)
    kernel[1][1] = 5
    kernel /= 13
    degenerate = cv2.filter2D(img, -1, kernel)
    if factor == 0.0:
        out = degenerate
    elif factor == 1.0:
        out = img
    else:
        out = img.astype(np.float32)
        degenerate = degenerate.astype(np.float32)[1:-1, 1:-1, :]
        out[1:-1, 1:-1, :] = degenerate + factor * (out[1:-1, 1:-1, :] - degenerate)
        out = out.astype(np.uint8)
    return out


def shear_x_func(img, factor, fill=(0, 0, 0)):
    H, W = img.shape[0], img.shape[1]
    M = np.float32([[1, factor, 0], [0, 1, 0]])
    out = cv2.warpAffine(
        img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR
    ).astype(np.uint8)
    return out


def translate_x_func(img, offset, fill=(0, 0, 0)):
    """
    same output as PIL.Image.transform
    """
    H, W = img.shape[0], img.shape[1]
    M = np.float32([[1, 0, -offset], [0, 1, 0]])
    out = cv2.warpAffine(
        img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR
    ).astype(np.uint8)
    return out


def translate_y_func(img, offset, fill=(0, 0, 0)):
    """
    same output as PIL.Image.transform
    """
    H, W = img.shape[0], img.shape[1]
    M = np.float32([[1, 0, 0], [0, 1, -offset]])
    out = cv2.warpAffine(
        img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR
    ).astype(np.uint8)
    return out


def posterize_func(img, bits):
    """
    same output as PIL.ImageOps.posterize
    """
    out = np.bitwise_and(img, np.uint8(255 << (8 - bits)))
    return out


def shear_y_func(img, factor, fill=(0, 0, 0)):
    H, W = img.shape[0], img.shape[1]
    M = np.float32([[1, 0, 0], [factor, 1, 0]])
    out = cv2.warpAffine(
        img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR
    ).astype(np.uint8)
    return out


def cutout_func(img, pad_size, replace=(0, 0, 0)):
    replace = np.array(replace, dtype=np.uint8)
    H, W = img.shape[0], img.shape[1]
    rh, rw = np.random.random(2)
    pad_size = pad_size // 2
    ch, cw = int(rh * H), int(rw * W)
    x1, x2 = max(ch - pad_size, 0), min(ch + pad_size, H)
    y1, y2 = max(cw - pad_size, 0), min(cw + pad_size, W)
    out = img.copy()
    out[x1:x2, y1:y2, :] = replace
    return out


### level to args
def enhance_level_to_args(MAX_LEVEL):
    def level_to_args(level):
        return ((level / MAX_LEVEL) * 1.8 + 0.1,)

    return level_to_args


def shear_level_to_args(MAX_LEVEL, replace_value):
    def level_to_args(level):
        level = (level / MAX_LEVEL) * 0.3
        if np.random.random() > 0.5:
            level = -level
        return (level, replace_value)

    return level_to_args


def translate_level_to_args(translate_const, MAX_LEVEL, replace_value):
    def level_to_args(level):
        level = (level / MAX_LEVEL) * float(translate_const)
        if np.random.random() > 0.5:
            level = -level
        return (level, replace_value)

    return level_to_args


def cutout_level_to_args(cutout_const, MAX_LEVEL, replace_value):
    def level_to_args(level):
        level = int((level / MAX_LEVEL) * cutout_const)
        return (level, replace_value)

    return level_to_args


def solarize_level_to_args(MAX_LEVEL):
    def level_to_args(level):
        level = int((level / MAX_LEVEL) * 256)
        return (level,)

    return level_to_args


def none_level_to_args(level):
    return ()


def posterize_level_to_args(MAX_LEVEL):
    def level_to_args(level):
        level = int((level / MAX_LEVEL) * 4)
        return (level,)

    return level_to_args


def rotate_level_to_args(MAX_LEVEL, replace_value):
    def level_to_args(level):
        level = (level / MAX_LEVEL) * 30
        if np.random.random() < 0.5:
            level = -level
        return (level, replace_value)

    return level_to_args


func_dict = {
    "Identity": identity_func,
    "AutoContrast": autocontrast_func,
    "Equalize": equalize_func,
    "Rotate": rotate_func,
    "Solarize": solarize_func,
    "Color": color_func,
    "Contrast": contrast_func,
    "Brightness": brightness_func,
    "Sharpness": sharpness_func,
    "ShearX": shear_x_func,
    "TranslateX": translate_x_func,
    "TranslateY": translate_y_func,
    "Posterize": posterize_func,
    "ShearY": shear_y_func,
}

translate_const = 10
MAX_LEVEL = 10
replace_value = (128, 128, 128)
arg_dict = {
    "Identity": none_level_to_args,
    "AutoContrast": none_level_to_args,
    "Equalize": none_level_to_args,
    "Rotate": rotate_level_to_args(MAX_LEVEL, replace_value),
    "Solarize": solarize_level_to_args(MAX_LEVEL),
    "Color": enhance_level_to_args(MAX_LEVEL),
    "Contrast": enhance_level_to_args(MAX_LEVEL),
    "Brightness": enhance_level_to_args(MAX_LEVEL),
    "Sharpness": enhance_level_to_args(MAX_LEVEL),
    "ShearX": shear_level_to_args(MAX_LEVEL, replace_value),
    "TranslateX": translate_level_to_args(translate_const, MAX_LEVEL, replace_value),
    "TranslateY": translate_level_to_args(translate_const, MAX_LEVEL, replace_value),
    "Posterize": posterize_level_to_args(MAX_LEVEL),
    "ShearY": shear_level_to_args(MAX_LEVEL, replace_value),
}


class RandomAugment(object):
    def __init__(self, N=2, M=10, isPIL=False, augs=[]):
        self.N = N
        self.M = M
        self.isPIL = isPIL
        if augs:
            self.augs = augs
        else:
            self.augs = list(arg_dict.keys())

    def get_random_ops(self):
        sampled_ops = np.random.choice(self.augs, self.N)
        return [(op, 0.5, self.M) for op in sampled_ops]

    def __call__(self, img):
        if self.isPIL:
            img = np.array(img)
        ops = self.get_random_ops()
        for name, prob, level in ops:
            if np.random.random() > prob:
                continue
            args = arg_dict[name](level)
            img = func_dict[name](img, *args)
        return img


class VideoRandomAugment(object):
    def __init__(self, N=2, M=10, p=0.0, tensor_in_tensor_out=True, augs=[]):
        self.N = N
        self.M = M
        self.p = p
        self.tensor_in_tensor_out = tensor_in_tensor_out
        if augs:
            self.augs = augs
        else:
            self.augs = list(arg_dict.keys())

    def get_random_ops(self):
        sampled_ops = np.random.choice(self.augs, self.N, replace=False)
        return [(op, self.M) for op in sampled_ops]

    def __call__(self, frames):
        assert (
            frames.shape[-1] == 3
        ), "Expecting last dimension for 3-channels RGB (b, h, w, c)."

        if self.tensor_in_tensor_out:
            frames = frames.numpy().astype(np.uint8)

        num_frames = frames.shape[0]

        ops = num_frames * [self.get_random_ops()]
        apply_or_not = num_frames * [np.random.random(size=self.N) > self.p]

        frames = torch.stack(
            list(map(self._aug, frames, ops, apply_or_not)), dim=0
        ).float()

        return frames

    def _aug(self, img, ops, apply_or_not):
        for i, (name, level) in enumerate(ops):
            if not apply_or_not[i]:
                continue
            args = arg_dict[name](level)
            img = func_dict[name](img, *args)
        return torch.from_numpy(img)


# if __name__ == "__main__":
#     a = RandomAugment()
#     img = np.random.randn(32, 32, 3)
#     a(img)






class BlipImageTrainProcessor(BlipImageBaseProcessor):
    def __init__(
        self, image_size=384, mean=None, std=None, min_scale=0.5, max_scale=1.0
    ):
        super().__init__(mean=mean, std=std)

        self.transform = transforms.Compose(
            [
                transforms.RandomResizedCrop(
                    image_size,
                    scale=(min_scale, max_scale),
                    interpolation=InterpolationMode.BICUBIC,
                ),
                # transforms.RandomHorizontalFlip(),
                RandomAugment(
                    2,
                    5,
                    isPIL=True,
                    augs=[
                        "Identity",
                        # "AutoContrast",
                        "Brightness",
                        "Sharpness",
                        "Equalize",
                        # "ShearX",
                        # "ShearY",
                        # "TranslateX",
                        # "TranslateY",
                        # "Rotate",
                    ],
                ),
                transforms.ToTensor(),
                self.normalize,
            ]
        )

    def __call__(self, item):
        return self.transform(item)


class BlipImageEvalProcessor(BlipImageBaseProcessor):
    def __init__(self, image_size=384, mean=None, std=None):
        super().__init__(mean=mean, std=std)

        self.transform = transforms.Compose(
            [
                transforms.Resize(
                    (image_size, image_size), interpolation=InterpolationMode.BICUBIC
                ),
                transforms.ToTensor(),
                self.normalize,
            ]
        )

    def __call__(self, item):
        return self.transform(item)


# if __name__ == "__main__":
#     a = BlipImageTrainProcessor(image_size=1024)
#     # img = np.random.randn(1024, 1024, 3)
#     # x = torch.zeros(1024, 1024, 3)
#     x = Image.open("/data/codes/GOT-main/log/serve_images/2023-05-23/a2a783d89ede819cdeae943a2199ad3d.jpg").convert("RGB")
#     print(x.size)
#     y = a(x)

#     print(y.size())