File size: 8,485 Bytes
8af0d0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import datetime
import logging
import logging.handlers
import os
import sys
import torch
import requests

from transformers import StoppingCriteria
from .constants import LOGDIR

server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
moderation_msg = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN."

handler = None


def build_logger(logger_name, logger_filename):
    global handler

    formatter = logging.Formatter(
        fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
        datefmt="%Y-%m-%d %H:%M:%S",
    )

    # Set the format of root handlers
    if not logging.getLogger().handlers:
        logging.basicConfig(level=logging.INFO)
    logging.getLogger().handlers[0].setFormatter(formatter)

    # Redirect stdout and stderr to loggers
    stdout_logger = logging.getLogger("stdout")
    stdout_logger.setLevel(logging.INFO)
    sl = StreamToLogger(stdout_logger, logging.INFO)
    sys.stdout = sl

    stderr_logger = logging.getLogger("stderr")
    stderr_logger.setLevel(logging.ERROR)
    sl = StreamToLogger(stderr_logger, logging.ERROR)
    sys.stderr = sl

    # Get logger
    logger = logging.getLogger(logger_name)
    logger.setLevel(logging.INFO)

    # Add a file handler for all loggers
    if handler is None:
        os.makedirs(LOGDIR, exist_ok=True)
        filename = os.path.join(LOGDIR, logger_filename)
        handler = logging.handlers.TimedRotatingFileHandler(
            filename, when='D', utc=True)
        handler.setFormatter(formatter)

        for name, item in logging.root.manager.loggerDict.items():
            if isinstance(item, logging.Logger):
                item.addHandler(handler)

    return logger


class StreamToLogger(object):
    """
    Fake file-like stream object that redirects writes to a logger instance.
    """
    def __init__(self, logger, log_level=logging.INFO):
        self.terminal = sys.stdout
        self.logger = logger
        self.log_level = log_level
        self.linebuf = ''

    def __getattr__(self, attr):
        return getattr(self.terminal, attr)

    def write(self, buf):
        temp_linebuf = self.linebuf + buf
        self.linebuf = ''
        for line in temp_linebuf.splitlines(True):
            # From the io.TextIOWrapper docs:
            #   On output, if newline is None, any '\n' characters written
            #   are translated to the system default line separator.
            # By default sys.stdout.write() expects '\n' newlines and then
            # translates them so this is still cross platform.
            if line[-1] == '\n':
                self.logger.log(self.log_level, line.rstrip())
            else:
                self.linebuf += line

    def flush(self):
        if self.linebuf != '':
            self.logger.log(self.log_level, self.linebuf.rstrip())
        self.linebuf = ''


def disable_torch_init():
    """
    Disable the redundant torch default initialization to accelerate model creation.
    """
    import torch
    setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
    setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)


def violates_moderation(text):
    """
    Check whether the text violates OpenAI moderation API.
    """
    url = "https://api.openai.com/v1/moderations"
    headers = {"Content-Type": "application/json",
               "Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]}
    text = text.replace("\n", "")
    data = "{" + '"input": ' + f'"{text}"' + "}"
    data = data.encode("utf-8")
    try:
        ret = requests.post(url, headers=headers, data=data, timeout=5)
        flagged = ret.json()["results"][0]["flagged"]
    except requests.exceptions.RequestException as e:
        flagged = False
    except KeyError as e:
        flagged = False

    return flagged


def pretty_print_semaphore(semaphore):
    if semaphore is None:
        return "None"
    return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"


class KeywordsStoppingCriteria(StoppingCriteria):
    def __init__(self, keywords, tokenizer, input_ids):
        self.keywords = keywords
        self.keyword_ids = [tokenizer(keyword).input_ids for keyword in keywords]
        self.keyword_ids = [keyword_id[0] for keyword_id in self.keyword_ids if type(keyword_id) is list and len(keyword_id) == 1]
        self.tokenizer = tokenizer
        self.start_len = None
        self.input_ids = input_ids

    def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        if self.start_len is None:
            self.start_len = self.input_ids.shape[1]
        else:
            for keyword_id in self.keyword_ids:
                if output_ids[0, -1] == keyword_id:
                    return True
            outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0]
            for keyword in self.keywords:
                if keyword in outputs:
                    return True
        return False


def smart_tokenizer_and_embedding_resize(special_tokens_dict, tokenizer, model):
    """Resize tokenizer and embedding.

    Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
    """
    # num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
    # # num_new_tokens = 1
    # # tokenizer.add_tokens(special_tokens_dict, special_tokens=True)
    # model.resize_token_embeddings(len(tokenizer))

    num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
    model.resize_token_embeddings(len(tokenizer))

    if num_new_tokens > 0:
        input_embeddings = model.get_input_embeddings().weight.data
        output_embeddings = model.get_output_embeddings().weight.data

        input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
            dim=0, keepdim=True)
        output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
            dim=0, keepdim=True)

        input_embeddings[-num_new_tokens:] = input_embeddings_avg
        output_embeddings[-num_new_tokens:] = output_embeddings_avg

    
def maybe_zero_3(param, ignore_status=False, name=None):
    from deepspeed import zero
    from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
    if hasattr(param, "ds_id"):
        if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
            if not ignore_status:
                logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}")
        with zero.GatheredParameters([param]):
            param = param.data.detach().cpu().clone()
    else:
        param = param.detach().cpu().clone()
    return param


# Borrowed from peft.utils.get_peft_model_state_dict
def get_peft_state_maybe_zero_3(named_params, bias):
    if bias == "none":
        to_return = {k: t for k, t in named_params if "lora_" in k}
    elif bias == "all":
        to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
    elif bias == "lora_only":
        to_return = {}
        maybe_lora_bias = {}
        lora_bias_names = set()
        for k, t in named_params:
            if "lora_" in k:
                to_return[k] = t
                bias_name = k.split("lora_")[0] + "bias"
                lora_bias_names.add(bias_name)
            elif "bias" in k:
                maybe_lora_bias[k] = t
        for k, t in maybe_lora_bias:
            if bias_name in lora_bias_names:
                to_return[bias_name] = t
    else:
        raise NotImplementedError
    to_return = {k: maybe_zero_3(v, name=k) for k, v in to_return.items()}
    return to_return


def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
    to_return = {k: t for k, t in named_params if "lora_" not in k}
    if require_grad_only:
        to_return = {k: t for k, t in to_return.items() if t.requires_grad}
    to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
    return to_return


def find_all_linear_names(model):
    cls = torch.nn.Linear
    lora_module_names = set()
    for name, module in model.named_modules():
        if isinstance(module, cls) and 'vision_model' not in name and 'mm_projector' not in name and 'vision_encoder' not in name and 'conv_final' not in name and'lm_head' not in name:
            lora_module_names.add(name)

    print(lora_module_names)
    return list(lora_module_names)