ucaslcl commited on
Commit
5174f58
·
verified ·
1 Parent(s): 9062b8b

Delete utils.py

Browse files
Files changed (1) hide show
  1. utils.py +0 -198
utils.py DELETED
@@ -1,198 +0,0 @@
1
- import datetime
2
- import logging
3
- import logging.handlers
4
- import os
5
- import sys
6
- import torch
7
- import requests
8
-
9
- from transformers import StoppingCriteria
10
- from .constants import LOGDIR
11
-
12
- server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
13
- moderation_msg = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN."
14
-
15
- handler = None
16
-
17
-
18
- def build_logger(logger_name, logger_filename):
19
- global handler
20
-
21
- formatter = logging.Formatter(
22
- fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
23
- datefmt="%Y-%m-%d %H:%M:%S",
24
- )
25
-
26
- # Set the format of root handlers
27
- if not logging.getLogger().handlers:
28
- logging.basicConfig(level=logging.INFO)
29
- logging.getLogger().handlers[0].setFormatter(formatter)
30
-
31
- # Redirect stdout and stderr to loggers
32
- stdout_logger = logging.getLogger("stdout")
33
- stdout_logger.setLevel(logging.INFO)
34
- sl = StreamToLogger(stdout_logger, logging.INFO)
35
- sys.stdout = sl
36
-
37
- stderr_logger = logging.getLogger("stderr")
38
- stderr_logger.setLevel(logging.ERROR)
39
- sl = StreamToLogger(stderr_logger, logging.ERROR)
40
- sys.stderr = sl
41
-
42
- # Get logger
43
- logger = logging.getLogger(logger_name)
44
- logger.setLevel(logging.INFO)
45
-
46
- # Add a file handler for all loggers
47
- if handler is None:
48
- os.makedirs(LOGDIR, exist_ok=True)
49
- filename = os.path.join(LOGDIR, logger_filename)
50
- handler = logging.handlers.TimedRotatingFileHandler(
51
- filename, when='D', utc=True)
52
- handler.setFormatter(formatter)
53
-
54
- for name, item in logging.root.manager.loggerDict.items():
55
- if isinstance(item, logging.Logger):
56
- item.addHandler(handler)
57
-
58
- return logger
59
-
60
-
61
- class StreamToLogger(object):
62
- """
63
- Fake file-like stream object that redirects writes to a logger instance.
64
- """
65
- def __init__(self, logger, log_level=logging.INFO):
66
- self.terminal = sys.stdout
67
- self.logger = logger
68
- self.log_level = log_level
69
- self.linebuf = ''
70
-
71
- def __getattr__(self, attr):
72
- return getattr(self.terminal, attr)
73
-
74
- def write(self, buf):
75
- temp_linebuf = self.linebuf + buf
76
- self.linebuf = ''
77
- for line in temp_linebuf.splitlines(True):
78
- # From the io.TextIOWrapper docs:
79
- # On output, if newline is None, any '\n' characters written
80
- # are translated to the system default line separator.
81
- # By default sys.stdout.write() expects '\n' newlines and then
82
- # translates them so this is still cross platform.
83
- if line[-1] == '\n':
84
- self.logger.log(self.log_level, line.rstrip())
85
- else:
86
- self.linebuf += line
87
-
88
- def flush(self):
89
- if self.linebuf != '':
90
- self.logger.log(self.log_level, self.linebuf.rstrip())
91
- self.linebuf = ''
92
-
93
-
94
- def disable_torch_init():
95
- """
96
- Disable the redundant torch default initialization to accelerate model creation.
97
- """
98
- import torch
99
- setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
100
- setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
101
-
102
-
103
- def violates_moderation(text):
104
- """
105
- Check whether the text violates OpenAI moderation API.
106
- """
107
- url = "https://api.openai.com/v1/moderations"
108
- headers = {"Content-Type": "application/json",
109
- "Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]}
110
- text = text.replace("\n", "")
111
- data = "{" + '"input": ' + f'"{text}"' + "}"
112
- data = data.encode("utf-8")
113
- try:
114
- ret = requests.post(url, headers=headers, data=data, timeout=5)
115
- flagged = ret.json()["results"][0]["flagged"]
116
- except requests.exceptions.RequestException as e:
117
- flagged = False
118
- except KeyError as e:
119
- flagged = False
120
-
121
- return flagged
122
-
123
-
124
- def pretty_print_semaphore(semaphore):
125
- if semaphore is None:
126
- return "None"
127
- return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"
128
-
129
-
130
- class KeywordsStoppingCriteria(StoppingCriteria):
131
- def __init__(self, keywords, tokenizer, input_ids):
132
- self.keywords = keywords
133
- self.keyword_ids = [tokenizer(keyword).input_ids for keyword in keywords]
134
- self.keyword_ids = [keyword_id[0] for keyword_id in self.keyword_ids if type(keyword_id) is list and len(keyword_id) == 1]
135
- self.tokenizer = tokenizer
136
- self.start_len = None
137
- self.input_ids = input_ids
138
-
139
- def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
140
- if self.start_len is None:
141
- self.start_len = self.input_ids.shape[1]
142
- else:
143
- for keyword_id in self.keyword_ids:
144
- if output_ids[0, -1] == keyword_id:
145
- return True
146
- outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0]
147
- for keyword in self.keywords:
148
- if keyword in outputs:
149
- return True
150
- return False
151
-
152
-
153
- def smart_tokenizer_and_embedding_resize(special_tokens_dict, tokenizer, model):
154
- """Resize tokenizer and embedding.
155
-
156
- Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
157
- """
158
- # num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
159
- # # num_new_tokens = 1
160
- # # tokenizer.add_tokens(special_tokens_dict, special_tokens=True)
161
- # model.resize_token_embeddings(len(tokenizer))
162
-
163
- num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
164
- model.resize_token_embeddings(len(tokenizer))
165
-
166
- if num_new_tokens > 0:
167
- input_embeddings = model.get_input_embeddings().weight.data
168
- output_embeddings = model.get_output_embeddings().weight.data
169
-
170
- input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
171
- dim=0, keepdim=True)
172
- output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
173
- dim=0, keepdim=True)
174
-
175
- input_embeddings[-num_new_tokens:] = input_embeddings_avg
176
- output_embeddings[-num_new_tokens:] = output_embeddings_avg
177
-
178
-
179
-
180
-
181
-
182
- def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
183
- to_return = {k: t for k, t in named_params if "lora_" not in k}
184
- if require_grad_only:
185
- to_return = {k: t for k, t in to_return.items() if t.requires_grad}
186
- to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
187
- return to_return
188
-
189
-
190
- def find_all_linear_names(model):
191
- cls = torch.nn.Linear
192
- lora_module_names = set()
193
- for name, module in model.named_modules():
194
- if isinstance(module, cls) and 'vision_model' not in name and 'mm_projector' not in name and 'vision_encoder' not in name and 'conv_final' not in name and'lm_head' not in name:
195
- lora_module_names.add(name)
196
-
197
- print(lora_module_names)
198
- return list(lora_module_names)