Delete utils.py
Browse files
utils.py
DELETED
@@ -1,198 +0,0 @@
|
|
1 |
-
import datetime
|
2 |
-
import logging
|
3 |
-
import logging.handlers
|
4 |
-
import os
|
5 |
-
import sys
|
6 |
-
import torch
|
7 |
-
import requests
|
8 |
-
|
9 |
-
from transformers import StoppingCriteria
|
10 |
-
from .constants import LOGDIR
|
11 |
-
|
12 |
-
server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
|
13 |
-
moderation_msg = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN."
|
14 |
-
|
15 |
-
handler = None
|
16 |
-
|
17 |
-
|
18 |
-
def build_logger(logger_name, logger_filename):
|
19 |
-
global handler
|
20 |
-
|
21 |
-
formatter = logging.Formatter(
|
22 |
-
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
|
23 |
-
datefmt="%Y-%m-%d %H:%M:%S",
|
24 |
-
)
|
25 |
-
|
26 |
-
# Set the format of root handlers
|
27 |
-
if not logging.getLogger().handlers:
|
28 |
-
logging.basicConfig(level=logging.INFO)
|
29 |
-
logging.getLogger().handlers[0].setFormatter(formatter)
|
30 |
-
|
31 |
-
# Redirect stdout and stderr to loggers
|
32 |
-
stdout_logger = logging.getLogger("stdout")
|
33 |
-
stdout_logger.setLevel(logging.INFO)
|
34 |
-
sl = StreamToLogger(stdout_logger, logging.INFO)
|
35 |
-
sys.stdout = sl
|
36 |
-
|
37 |
-
stderr_logger = logging.getLogger("stderr")
|
38 |
-
stderr_logger.setLevel(logging.ERROR)
|
39 |
-
sl = StreamToLogger(stderr_logger, logging.ERROR)
|
40 |
-
sys.stderr = sl
|
41 |
-
|
42 |
-
# Get logger
|
43 |
-
logger = logging.getLogger(logger_name)
|
44 |
-
logger.setLevel(logging.INFO)
|
45 |
-
|
46 |
-
# Add a file handler for all loggers
|
47 |
-
if handler is None:
|
48 |
-
os.makedirs(LOGDIR, exist_ok=True)
|
49 |
-
filename = os.path.join(LOGDIR, logger_filename)
|
50 |
-
handler = logging.handlers.TimedRotatingFileHandler(
|
51 |
-
filename, when='D', utc=True)
|
52 |
-
handler.setFormatter(formatter)
|
53 |
-
|
54 |
-
for name, item in logging.root.manager.loggerDict.items():
|
55 |
-
if isinstance(item, logging.Logger):
|
56 |
-
item.addHandler(handler)
|
57 |
-
|
58 |
-
return logger
|
59 |
-
|
60 |
-
|
61 |
-
class StreamToLogger(object):
|
62 |
-
"""
|
63 |
-
Fake file-like stream object that redirects writes to a logger instance.
|
64 |
-
"""
|
65 |
-
def __init__(self, logger, log_level=logging.INFO):
|
66 |
-
self.terminal = sys.stdout
|
67 |
-
self.logger = logger
|
68 |
-
self.log_level = log_level
|
69 |
-
self.linebuf = ''
|
70 |
-
|
71 |
-
def __getattr__(self, attr):
|
72 |
-
return getattr(self.terminal, attr)
|
73 |
-
|
74 |
-
def write(self, buf):
|
75 |
-
temp_linebuf = self.linebuf + buf
|
76 |
-
self.linebuf = ''
|
77 |
-
for line in temp_linebuf.splitlines(True):
|
78 |
-
# From the io.TextIOWrapper docs:
|
79 |
-
# On output, if newline is None, any '\n' characters written
|
80 |
-
# are translated to the system default line separator.
|
81 |
-
# By default sys.stdout.write() expects '\n' newlines and then
|
82 |
-
# translates them so this is still cross platform.
|
83 |
-
if line[-1] == '\n':
|
84 |
-
self.logger.log(self.log_level, line.rstrip())
|
85 |
-
else:
|
86 |
-
self.linebuf += line
|
87 |
-
|
88 |
-
def flush(self):
|
89 |
-
if self.linebuf != '':
|
90 |
-
self.logger.log(self.log_level, self.linebuf.rstrip())
|
91 |
-
self.linebuf = ''
|
92 |
-
|
93 |
-
|
94 |
-
def disable_torch_init():
|
95 |
-
"""
|
96 |
-
Disable the redundant torch default initialization to accelerate model creation.
|
97 |
-
"""
|
98 |
-
import torch
|
99 |
-
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
100 |
-
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
101 |
-
|
102 |
-
|
103 |
-
def violates_moderation(text):
|
104 |
-
"""
|
105 |
-
Check whether the text violates OpenAI moderation API.
|
106 |
-
"""
|
107 |
-
url = "https://api.openai.com/v1/moderations"
|
108 |
-
headers = {"Content-Type": "application/json",
|
109 |
-
"Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]}
|
110 |
-
text = text.replace("\n", "")
|
111 |
-
data = "{" + '"input": ' + f'"{text}"' + "}"
|
112 |
-
data = data.encode("utf-8")
|
113 |
-
try:
|
114 |
-
ret = requests.post(url, headers=headers, data=data, timeout=5)
|
115 |
-
flagged = ret.json()["results"][0]["flagged"]
|
116 |
-
except requests.exceptions.RequestException as e:
|
117 |
-
flagged = False
|
118 |
-
except KeyError as e:
|
119 |
-
flagged = False
|
120 |
-
|
121 |
-
return flagged
|
122 |
-
|
123 |
-
|
124 |
-
def pretty_print_semaphore(semaphore):
|
125 |
-
if semaphore is None:
|
126 |
-
return "None"
|
127 |
-
return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"
|
128 |
-
|
129 |
-
|
130 |
-
class KeywordsStoppingCriteria(StoppingCriteria):
|
131 |
-
def __init__(self, keywords, tokenizer, input_ids):
|
132 |
-
self.keywords = keywords
|
133 |
-
self.keyword_ids = [tokenizer(keyword).input_ids for keyword in keywords]
|
134 |
-
self.keyword_ids = [keyword_id[0] for keyword_id in self.keyword_ids if type(keyword_id) is list and len(keyword_id) == 1]
|
135 |
-
self.tokenizer = tokenizer
|
136 |
-
self.start_len = None
|
137 |
-
self.input_ids = input_ids
|
138 |
-
|
139 |
-
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
140 |
-
if self.start_len is None:
|
141 |
-
self.start_len = self.input_ids.shape[1]
|
142 |
-
else:
|
143 |
-
for keyword_id in self.keyword_ids:
|
144 |
-
if output_ids[0, -1] == keyword_id:
|
145 |
-
return True
|
146 |
-
outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0]
|
147 |
-
for keyword in self.keywords:
|
148 |
-
if keyword in outputs:
|
149 |
-
return True
|
150 |
-
return False
|
151 |
-
|
152 |
-
|
153 |
-
def smart_tokenizer_and_embedding_resize(special_tokens_dict, tokenizer, model):
|
154 |
-
"""Resize tokenizer and embedding.
|
155 |
-
|
156 |
-
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
|
157 |
-
"""
|
158 |
-
# num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
|
159 |
-
# # num_new_tokens = 1
|
160 |
-
# # tokenizer.add_tokens(special_tokens_dict, special_tokens=True)
|
161 |
-
# model.resize_token_embeddings(len(tokenizer))
|
162 |
-
|
163 |
-
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
|
164 |
-
model.resize_token_embeddings(len(tokenizer))
|
165 |
-
|
166 |
-
if num_new_tokens > 0:
|
167 |
-
input_embeddings = model.get_input_embeddings().weight.data
|
168 |
-
output_embeddings = model.get_output_embeddings().weight.data
|
169 |
-
|
170 |
-
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
171 |
-
dim=0, keepdim=True)
|
172 |
-
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
173 |
-
dim=0, keepdim=True)
|
174 |
-
|
175 |
-
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
176 |
-
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
|
183 |
-
to_return = {k: t for k, t in named_params if "lora_" not in k}
|
184 |
-
if require_grad_only:
|
185 |
-
to_return = {k: t for k, t in to_return.items() if t.requires_grad}
|
186 |
-
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
|
187 |
-
return to_return
|
188 |
-
|
189 |
-
|
190 |
-
def find_all_linear_names(model):
|
191 |
-
cls = torch.nn.Linear
|
192 |
-
lora_module_names = set()
|
193 |
-
for name, module in model.named_modules():
|
194 |
-
if isinstance(module, cls) and 'vision_model' not in name and 'mm_projector' not in name and 'vision_encoder' not in name and 'conv_final' not in name and'lm_head' not in name:
|
195 |
-
lora_module_names.add(name)
|
196 |
-
|
197 |
-
print(lora_module_names)
|
198 |
-
return list(lora_module_names)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|