File size: 2,454 Bytes
b30dd4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
702f47f
b30dd4c
 
702f47f
b30dd4c
 
702f47f
b30dd4c
 
702f47f
b30dd4c
 
 
 
 
 
 
 
 
702f47f
 
 
 
 
b30dd4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
702f47f
 
b30dd4c
 
 
702f47f
b30dd4c
 
 
 
 
702f47f
 
 
 
 
b30dd4c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- wnut_17
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: my_awesome_wnut_model
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: wnut_17
      type: wnut_17
      config: wnut_17
      split: test
      args: wnut_17
    metrics:
    - name: Precision
      type: precision
      value: 0.5680628272251309
    - name: Recall
      type: recall
      value: 0.40222428174235403
    - name: F1
      type: f1
      value: 0.4709712425393381
    - name: Accuracy
      type: accuracy
      value: 0.9480141934932239
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_wnut_model

This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the wnut_17 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2966
- Precision: 0.5681
- Recall: 0.4022
- F1: 0.4710
- Accuracy: 0.9480

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 107  | 0.2496          | 0.5131    | 0.3624 | 0.4248 | 0.9450   |
| No log        | 2.0   | 214  | 0.2794          | 0.5829    | 0.3485 | 0.4362 | 0.9456   |
| No log        | 3.0   | 321  | 0.2808          | 0.5755    | 0.3781 | 0.4564 | 0.9465   |
| No log        | 4.0   | 428  | 0.2935          | 0.5569    | 0.3902 | 0.4589 | 0.9476   |
| 0.059         | 5.0   | 535  | 0.2966          | 0.5681    | 0.4022 | 0.4710 | 0.9480   |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.0.1+cu117
- Datasets 2.20.0
- Tokenizers 0.19.1