stephen-steckler commited on
Commit
2f2ec3a
·
1 Parent(s): 383576d

Upload 19 files

Browse files
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama2
3
+ base_model: TheBloke/Llama-2-7B-GPTQ
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: gptq-small-nids-out
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
15
+ # gptq-small-nids-out
16
+
17
+ This model is a fine-tuned version of [TheBloke/Llama-2-7B-GPTQ](https://huggingface.co/TheBloke/Llama-2-7B-GPTQ) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0027
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 1.7e-05
39
+ - train_batch_size: 1
40
+ - eval_batch_size: 1
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 4
44
+ - total_train_batch_size: 4
45
+ - total_eval_batch_size: 4
46
+ - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
47
+ - lr_scheduler_type: cosine
48
+ - lr_scheduler_warmup_steps: 100
49
+ - num_epochs: 1
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss |
54
+ |:-------------:|:-----:|:----:|:---------------:|
55
+ | 0.0028 | 1.0 | 371 | 0.0027 |
56
+
57
+
58
+ ### Framework versions
59
+
60
+ - Transformers 4.34.1
61
+ - Pytorch 2.0.1+cu117
62
+ - Datasets 2.14.6
63
+ - Tokenizers 0.14.1
adapter_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "TheBloke/Llama-2-7B-GPTQ",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 8,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "q_proj",
20
+ "o_proj",
21
+ "k_proj",
22
+ "v_proj"
23
+ ],
24
+ "task_type": "CAUSAL_LM"
25
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c97df72b52c910c995b44cc7244f338a09b2218be6ede1c4f3ccc163c21728b
3
+ size 33646413
checkpoint-371/README.md ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: TheBloke/Llama-2-7B-GPTQ
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: gptq
206
+ - bits: 4
207
+ - tokenizer: None
208
+ - dataset: None
209
+ - group_size: 128
210
+ - damp_percent: 0.01
211
+ - desc_act: False
212
+ - sym: True
213
+ - true_sequential: True
214
+ - use_cuda_fp16: False
215
+ - model_seqlen: None
216
+ - block_name_to_quantize: None
217
+ - module_name_preceding_first_block: None
218
+ - batch_size: 1
219
+ - pad_token_id: None
220
+ - disable_exllama: True
221
+ - max_input_length: None
222
+
223
+ ### Framework versions
224
+
225
+
226
+ - PEFT 0.7.0.dev0
checkpoint-371/adapter_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "TheBloke/Llama-2-7B-GPTQ",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 8,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "q_proj",
20
+ "o_proj",
21
+ "k_proj",
22
+ "v_proj"
23
+ ],
24
+ "task_type": "CAUSAL_LM"
25
+ }
checkpoint-371/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c97df72b52c910c995b44cc7244f338a09b2218be6ede1c4f3ccc163c21728b
3
+ size 33646413
checkpoint-371/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bb43403cfbb1109a098075a858073e303f577349e6bd3e49ba5427fb6135d00
3
+ size 67323205
checkpoint-371/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f5ee3732dff954ad7ea41db595d78b727cbd8bf29185d51be3bb90ff95cdc9a
3
+ size 17655
checkpoint-371/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b958143ecfeef80fa7d9537dea1fe6f5e5f2a53a836306881a6b806dffe99dae
3
+ size 17655
checkpoint-371/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0b2f0a767703037fc989da759a4ac6765f659abe387e669596bb66fb2e7006a
3
+ size 17655
checkpoint-371/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03f6590950ac33ec8dacf0ef35f376ff34518940844eddb17511250c6ecbfbad
3
+ size 17655
checkpoint-371/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee62a9e4560eb1ecbb7cf6bc92c71370f025e7640fd733939a3f74258fd7c6b1
3
+ size 627
checkpoint-371/trainer_state.json ADDED
@@ -0,0 +1,2253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 371,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 1.7000000000000001e-09,
14
+ "loss": 5.7677,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 6.8000000000000005e-09,
20
+ "loss": 5.78,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 1.5299999999999998e-08,
26
+ "loss": 5.7759,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 2.7200000000000002e-08,
32
+ "loss": 5.7423,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 4.250000000000001e-08,
38
+ "loss": 5.7502,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.02,
43
+ "learning_rate": 6.119999999999999e-08,
44
+ "loss": 5.2505,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 8.330000000000001e-08,
50
+ "loss": 5.7644,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 1.0880000000000001e-07,
56
+ "loss": 5.7474,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 1.377e-07,
62
+ "loss": 5.2204,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.03,
67
+ "learning_rate": 1.7000000000000004e-07,
68
+ "loss": 5.7827,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.03,
73
+ "learning_rate": 2.057e-07,
74
+ "loss": 5.7714,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.03,
79
+ "learning_rate": 2.4479999999999997e-07,
80
+ "loss": 5.7684,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.04,
85
+ "learning_rate": 2.8730000000000004e-07,
86
+ "loss": 5.7647,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.04,
91
+ "learning_rate": 3.3320000000000005e-07,
92
+ "loss": 5.7798,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.04,
97
+ "learning_rate": 3.825e-07,
98
+ "loss": 5.7671,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.04,
103
+ "learning_rate": 4.3520000000000003e-07,
104
+ "loss": 5.7531,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.05,
109
+ "learning_rate": 4.913000000000001e-07,
110
+ "loss": 5.7502,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.05,
115
+ "learning_rate": 5.508e-07,
116
+ "loss": 5.7472,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.05,
121
+ "learning_rate": 6.137e-07,
122
+ "loss": 5.2499,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.05,
127
+ "learning_rate": 6.800000000000002e-07,
128
+ "loss": 5.7571,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.06,
133
+ "learning_rate": 7.496999999999999e-07,
134
+ "loss": 5.7718,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.06,
139
+ "learning_rate": 8.228e-07,
140
+ "loss": 5.7527,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.06,
145
+ "learning_rate": 8.993e-07,
146
+ "loss": 5.7096,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.06,
151
+ "learning_rate": 9.791999999999999e-07,
152
+ "loss": 5.7555,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.07,
157
+ "learning_rate": 1.0625e-06,
158
+ "loss": 5.7236,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.07,
163
+ "learning_rate": 1.1492000000000002e-06,
164
+ "loss": 5.7228,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.07,
169
+ "learning_rate": 1.2393000000000001e-06,
170
+ "loss": 5.2193,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.08,
175
+ "learning_rate": 1.3328000000000002e-06,
176
+ "loss": 5.7129,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.08,
181
+ "learning_rate": 1.4296999999999998e-06,
182
+ "loss": 5.7019,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.08,
187
+ "learning_rate": 1.53e-06,
188
+ "loss": 5.6959,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.08,
193
+ "learning_rate": 1.6337000000000001e-06,
194
+ "loss": 5.668,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.09,
199
+ "learning_rate": 1.7408000000000001e-06,
200
+ "loss": 5.6676,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.09,
205
+ "learning_rate": 1.8513000000000002e-06,
206
+ "loss": 5.6193,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.09,
211
+ "learning_rate": 1.9652000000000003e-06,
212
+ "loss": 5.6317,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.09,
217
+ "learning_rate": 2.0824999999999995e-06,
218
+ "loss": 5.0984,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.1,
223
+ "learning_rate": 2.2032e-06,
224
+ "loss": 5.5622,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.1,
229
+ "learning_rate": 2.3272999999999997e-06,
230
+ "loss": 5.5116,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.1,
235
+ "learning_rate": 2.4548e-06,
236
+ "loss": 5.0124,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.11,
241
+ "learning_rate": 2.5857e-06,
242
+ "loss": 5.4656,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.11,
247
+ "learning_rate": 2.7200000000000006e-06,
248
+ "loss": 5.4529,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.11,
253
+ "learning_rate": 2.8576999999999993e-06,
254
+ "loss": 4.9268,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.11,
259
+ "learning_rate": 2.9987999999999996e-06,
260
+ "loss": 5.3852,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.12,
265
+ "learning_rate": 3.1432999999999996e-06,
266
+ "loss": 4.8709,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.12,
271
+ "learning_rate": 3.2912e-06,
272
+ "loss": 5.2857,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.12,
277
+ "learning_rate": 3.4425e-06,
278
+ "loss": 5.2313,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.12,
283
+ "learning_rate": 3.5972e-06,
284
+ "loss": 5.187,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.13,
289
+ "learning_rate": 3.7553e-06,
290
+ "loss": 4.7334,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.13,
295
+ "learning_rate": 3.9167999999999995e-06,
296
+ "loss": 5.1158,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.13,
301
+ "learning_rate": 4.081699999999999e-06,
302
+ "loss": 5.0368,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.13,
307
+ "learning_rate": 4.25e-06,
308
+ "loss": 5.0124,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.14,
313
+ "learning_rate": 4.4216999999999995e-06,
314
+ "loss": 4.9181,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.14,
319
+ "learning_rate": 4.596800000000001e-06,
320
+ "loss": 4.8915,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.14,
325
+ "learning_rate": 4.775300000000001e-06,
326
+ "loss": 4.7926,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.15,
331
+ "learning_rate": 4.957200000000001e-06,
332
+ "loss": 4.7338,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.15,
337
+ "learning_rate": 5.142500000000001e-06,
338
+ "loss": 4.6507,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.15,
343
+ "learning_rate": 5.331200000000001e-06,
344
+ "loss": 4.5809,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.15,
349
+ "learning_rate": 5.523299999999999e-06,
350
+ "loss": 4.4997,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.16,
355
+ "learning_rate": 5.718799999999999e-06,
356
+ "loss": 4.4298,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.16,
361
+ "learning_rate": 5.917699999999999e-06,
362
+ "loss": 4.3173,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.16,
367
+ "learning_rate": 6.12e-06,
368
+ "loss": 3.936,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.16,
373
+ "learning_rate": 6.325699999999999e-06,
374
+ "loss": 4.1268,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.17,
379
+ "learning_rate": 6.5348000000000005e-06,
380
+ "loss": 4.0394,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.17,
385
+ "learning_rate": 6.747300000000001e-06,
386
+ "loss": 3.9413,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.17,
391
+ "learning_rate": 6.9632000000000005e-06,
392
+ "loss": 3.814,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.18,
397
+ "learning_rate": 7.1825e-06,
398
+ "loss": 3.4873,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.18,
403
+ "learning_rate": 7.405200000000001e-06,
404
+ "loss": 3.5816,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.18,
409
+ "learning_rate": 7.631300000000001e-06,
410
+ "loss": 3.486,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.18,
415
+ "learning_rate": 7.860800000000001e-06,
416
+ "loss": 3.3758,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.19,
421
+ "learning_rate": 8.093699999999998e-06,
422
+ "loss": 3.2212,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.19,
427
+ "learning_rate": 8.329999999999998e-06,
428
+ "loss": 3.0783,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.19,
433
+ "learning_rate": 8.5697e-06,
434
+ "loss": 2.9547,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.19,
439
+ "learning_rate": 8.8128e-06,
440
+ "loss": 2.7953,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.2,
445
+ "learning_rate": 9.059299999999998e-06,
446
+ "loss": 2.6658,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.2,
451
+ "learning_rate": 9.309199999999999e-06,
452
+ "loss": 2.4552,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.2,
457
+ "learning_rate": 9.5625e-06,
458
+ "loss": 2.301,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.2,
463
+ "learning_rate": 9.8192e-06,
464
+ "loss": 2.2726,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.21,
469
+ "learning_rate": 1.00793e-05,
470
+ "loss": 2.1129,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.21,
475
+ "learning_rate": 1.03428e-05,
476
+ "loss": 1.9555,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.21,
481
+ "learning_rate": 1.0609700000000001e-05,
482
+ "loss": 1.8066,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.22,
487
+ "learning_rate": 1.0880000000000003e-05,
488
+ "loss": 1.6639,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.22,
493
+ "learning_rate": 1.1153700000000001e-05,
494
+ "loss": 1.5209,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.22,
499
+ "learning_rate": 1.1430799999999997e-05,
500
+ "loss": 1.4038,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.22,
505
+ "learning_rate": 1.17113e-05,
506
+ "loss": 1.2361,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.23,
511
+ "learning_rate": 1.1995199999999998e-05,
512
+ "loss": 1.0943,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.23,
517
+ "learning_rate": 1.2282499999999998e-05,
518
+ "loss": 0.9655,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.23,
523
+ "learning_rate": 1.2573199999999998e-05,
524
+ "loss": 0.8187,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.23,
529
+ "learning_rate": 1.28673e-05,
530
+ "loss": 0.8124,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.24,
535
+ "learning_rate": 1.31648e-05,
536
+ "loss": 0.7347,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.24,
541
+ "learning_rate": 1.34657e-05,
542
+ "loss": 0.5575,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.24,
547
+ "learning_rate": 1.377e-05,
548
+ "loss": 0.4802,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.25,
553
+ "learning_rate": 1.40777e-05,
554
+ "loss": 0.4116,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.25,
559
+ "learning_rate": 1.43888e-05,
560
+ "loss": 0.494,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.25,
565
+ "learning_rate": 1.4703300000000002e-05,
566
+ "loss": 0.2956,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.25,
571
+ "learning_rate": 1.50212e-05,
572
+ "loss": 0.2433,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.26,
577
+ "learning_rate": 1.53425e-05,
578
+ "loss": 0.397,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.26,
583
+ "learning_rate": 1.5667199999999998e-05,
584
+ "loss": 0.1521,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.26,
589
+ "learning_rate": 1.59953e-05,
590
+ "loss": 0.1133,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.26,
595
+ "learning_rate": 1.6326799999999998e-05,
596
+ "loss": 0.084,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.27,
601
+ "learning_rate": 1.66617e-05,
602
+ "loss": 0.0583,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.27,
607
+ "learning_rate": 1.7e-05,
608
+ "loss": 0.041,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.27,
613
+ "learning_rate": 1.6999428856511285e-05,
614
+ "loss": 0.3927,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.27,
619
+ "learning_rate": 1.6997715502799228e-05,
620
+ "loss": 0.0198,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.28,
625
+ "learning_rate": 1.6994860169115786e-05,
626
+ "loss": 0.0146,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.28,
631
+ "learning_rate": 1.699086323917984e-05,
632
+ "loss": 0.0101,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.28,
637
+ "learning_rate": 1.6985725250125628e-05,
638
+ "loss": 0.0075,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.29,
643
+ "learning_rate": 1.6979446892430557e-05,
644
+ "loss": 0.0052,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.29,
649
+ "learning_rate": 1.6972029009822423e-05,
650
+ "loss": 0.0038,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.29,
655
+ "learning_rate": 1.6963472599166012e-05,
656
+ "loss": 0.0026,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.29,
661
+ "learning_rate": 1.695377881032915e-05,
662
+ "loss": 0.7339,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.3,
667
+ "learning_rate": 1.6942948946028152e-05,
668
+ "loss": 0.0014,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.3,
673
+ "learning_rate": 1.693098446165278e-05,
674
+ "loss": 0.0013,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.3,
679
+ "learning_rate": 1.691788696507065e-05,
680
+ "loss": 0.001,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.3,
685
+ "learning_rate": 1.690365821641114e-05,
686
+ "loss": 0.0008,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.31,
691
+ "learning_rate": 1.688830012782888e-05,
692
+ "loss": 0.0007,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.31,
697
+ "learning_rate": 1.6871814763246757e-05,
698
+ "loss": 0.0007,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.31,
703
+ "learning_rate": 1.6854204338078574e-05,
704
+ "loss": 0.0006,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.32,
709
+ "learning_rate": 1.683547121893131e-05,
710
+ "loss": 0.7544,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.32,
715
+ "learning_rate": 1.6815617923287087e-05,
716
+ "loss": 0.0004,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.32,
721
+ "learning_rate": 1.679464711916486e-05,
722
+ "loss": 0.6893,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.32,
727
+ "learning_rate": 1.6772561624761852e-05,
728
+ "loss": 0.0019,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.33,
733
+ "learning_rate": 1.6749364408074844e-05,
734
+ "loss": 0.0265,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.33,
739
+ "learning_rate": 1.6725058586501322e-05,
740
+ "loss": 0.001,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.33,
745
+ "learning_rate": 1.6699647426420506e-05,
746
+ "loss": 0.0034,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.33,
751
+ "learning_rate": 1.6673134342754424e-05,
752
+ "loss": 0.0009,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.34,
757
+ "learning_rate": 1.6645522898508988e-05,
758
+ "loss": 0.5373,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.34,
763
+ "learning_rate": 1.661681680429516e-05,
764
+ "loss": 0.0012,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.34,
769
+ "learning_rate": 1.6587019917830303e-05,
770
+ "loss": 0.0016,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.35,
775
+ "learning_rate": 1.6556136243419757e-05,
776
+ "loss": 0.0019,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.35,
781
+ "learning_rate": 1.6524169931418705e-05,
782
+ "loss": 0.0019,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.35,
787
+ "learning_rate": 1.6491125277674436e-05,
788
+ "loss": 0.0018,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.35,
793
+ "learning_rate": 1.6457006722949026e-05,
794
+ "loss": 0.0016,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.36,
799
+ "learning_rate": 1.6421818852322558e-05,
800
+ "loss": 0.0012,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.36,
805
+ "learning_rate": 1.6385566394576964e-05,
806
+ "loss": 0.0008,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.36,
811
+ "learning_rate": 1.6348254221560524e-05,
812
+ "loss": 0.5306,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.36,
817
+ "learning_rate": 1.630988734753316e-05,
818
+ "loss": 0.0007,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.37,
823
+ "learning_rate": 1.627047092849258e-05,
824
+ "loss": 0.0007,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.37,
829
+ "learning_rate": 1.62300102614814e-05,
830
+ "loss": 0.0008,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.37,
835
+ "learning_rate": 1.6188510783875267e-05,
836
+ "loss": 0.0009,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.37,
841
+ "learning_rate": 1.6145978072652165e-05,
842
+ "loss": 0.0007,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.38,
847
+ "learning_rate": 1.6102417843642925e-05,
848
+ "loss": 0.0008,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.38,
853
+ "learning_rate": 1.6057835950763122e-05,
854
+ "loss": 0.5449,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.38,
859
+ "learning_rate": 1.601223838522637e-05,
860
+ "loss": 0.001,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.39,
865
+ "learning_rate": 1.5965631274739165e-05,
866
+ "loss": 0.0011,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.39,
871
+ "learning_rate": 1.5918020882677436e-05,
872
+ "loss": 0.0015,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.39,
877
+ "learning_rate": 1.5869413607244815e-05,
878
+ "loss": 0.0015,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.39,
883
+ "learning_rate": 1.58198159806128e-05,
884
+ "loss": 0.0016,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.4,
889
+ "learning_rate": 1.5769234668042916e-05,
890
+ "loss": 0.0015,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.4,
895
+ "learning_rate": 1.5717676466991014e-05,
896
+ "loss": 0.4688,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.4,
901
+ "learning_rate": 1.566514830619375e-05,
902
+ "loss": 0.0015,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.4,
907
+ "learning_rate": 1.561165724473748e-05,
908
+ "loss": 0.0019,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.41,
913
+ "learning_rate": 1.555721047110961e-05,
914
+ "loss": 0.0021,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.41,
919
+ "learning_rate": 1.5501815302232545e-05,
920
+ "loss": 0.0021,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.41,
925
+ "learning_rate": 1.5445479182480406e-05,
926
+ "loss": 0.0017,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.42,
931
+ "learning_rate": 1.5388209682678602e-05,
932
+ "loss": 0.0015,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.42,
937
+ "learning_rate": 1.53300144990864e-05,
938
+ "loss": 0.0012,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.42,
943
+ "learning_rate": 1.5270901452362678e-05,
944
+ "loss": 0.0008,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.42,
949
+ "learning_rate": 1.5210878486514891e-05,
950
+ "loss": 0.0006,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.43,
955
+ "learning_rate": 1.5149953667831547e-05,
956
+ "loss": 0.0004,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.43,
961
+ "learning_rate": 1.5088135183798168e-05,
962
+ "loss": 0.0003,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.43,
967
+ "learning_rate": 1.5025431341997022e-05,
968
+ "loss": 0.0002,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.43,
973
+ "learning_rate": 1.4961850568990687e-05,
974
+ "loss": 0.0002,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.44,
979
+ "learning_rate": 1.4897401409189638e-05,
980
+ "loss": 0.0001,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.44,
985
+ "learning_rate": 1.4832092523703991e-05,
986
+ "loss": 0.0001,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.44,
991
+ "learning_rate": 1.476593268917955e-05,
992
+ "loss": 0.0001,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.44,
997
+ "learning_rate": 1.4698930796618369e-05,
998
+ "loss": 0.0001,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.45,
1003
+ "learning_rate": 1.4631095850183895e-05,
1004
+ "loss": 0.0001,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.45,
1009
+ "learning_rate": 1.4562436965990942e-05,
1010
+ "loss": 0.0,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.45,
1015
+ "learning_rate": 1.4492963370880608e-05,
1016
+ "loss": 0.0,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.46,
1021
+ "learning_rate": 1.44226844011803e-05,
1022
+ "loss": 0.0,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.46,
1027
+ "learning_rate": 1.4351609501449064e-05,
1028
+ "loss": 0.0,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.46,
1033
+ "learning_rate": 1.4279748223208351e-05,
1034
+ "loss": 0.0,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.46,
1039
+ "learning_rate": 1.420711022365844e-05,
1040
+ "loss": 0.0,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.47,
1045
+ "learning_rate": 1.4133705264380616e-05,
1046
+ "loss": 0.0,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.47,
1051
+ "learning_rate": 1.4059543210025357e-05,
1052
+ "loss": 0.0,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.47,
1057
+ "learning_rate": 1.3984634026986654e-05,
1058
+ "loss": 0.9154,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.47,
1063
+ "learning_rate": 1.3908987782062657e-05,
1064
+ "loss": 0.0,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.48,
1069
+ "learning_rate": 1.3832614641102833e-05,
1070
+ "loss": 0.8321,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.48,
1075
+ "learning_rate": 1.3755524867641806e-05,
1076
+ "loss": 0.0001,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.48,
1081
+ "learning_rate": 1.3677728821520092e-05,
1082
+ "loss": 0.0001,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.49,
1087
+ "learning_rate": 1.3599236957491844e-05,
1088
+ "loss": 0.6109,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.49,
1093
+ "learning_rate": 1.3520059823819908e-05,
1094
+ "loss": 0.0005,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.49,
1099
+ "learning_rate": 1.3440208060858246e-05,
1100
+ "loss": 0.0009,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.49,
1105
+ "learning_rate": 1.3359692399622025e-05,
1106
+ "loss": 0.0015,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.5,
1111
+ "learning_rate": 1.3278523660345522e-05,
1112
+ "loss": 0.0025,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.5,
1117
+ "learning_rate": 1.319671275102801e-05,
1118
+ "loss": 0.0031,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.5,
1123
+ "learning_rate": 1.3114270665967886e-05,
1124
+ "loss": 0.0039,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.5,
1129
+ "learning_rate": 1.303120848428516e-05,
1130
+ "loss": 0.0038,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.51,
1135
+ "learning_rate": 1.2947537368432597e-05,
1136
+ "loss": 0.3774,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.51,
1141
+ "learning_rate": 1.2863268562695612e-05,
1142
+ "loss": 0.3549,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.51,
1147
+ "learning_rate": 1.277841339168119e-05,
1148
+ "loss": 0.0063,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.51,
1153
+ "learning_rate": 1.2692983258796016e-05,
1154
+ "loss": 0.0081,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.52,
1159
+ "learning_rate": 1.2606989644714005e-05,
1160
+ "loss": 0.0086,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.52,
1165
+ "learning_rate": 1.2520444105833453e-05,
1166
+ "loss": 0.0078,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.52,
1171
+ "learning_rate": 1.2433358272724008e-05,
1172
+ "loss": 0.0076,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.53,
1177
+ "learning_rate": 1.234574384856368e-05,
1178
+ "loss": 0.0058,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.53,
1183
+ "learning_rate": 1.225761260756609e-05,
1184
+ "loss": 0.3586,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.53,
1189
+ "learning_rate": 1.2168976393398161e-05,
1190
+ "loss": 0.0038,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.53,
1195
+ "learning_rate": 1.2079847117588505e-05,
1196
+ "loss": 0.0035,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.54,
1201
+ "learning_rate": 1.1990236757926658e-05,
1202
+ "loss": 0.0029,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.54,
1207
+ "learning_rate": 1.1900157356853431e-05,
1208
+ "loss": 0.0025,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.54,
1213
+ "learning_rate": 1.1809621019842562e-05,
1214
+ "loss": 0.8239,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.54,
1219
+ "learning_rate": 1.1718639913773905e-05,
1220
+ "loss": 0.0019,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 0.55,
1225
+ "learning_rate": 1.1627226265298363e-05,
1226
+ "loss": 0.0021,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 0.55,
1231
+ "learning_rate": 1.1535392359194778e-05,
1232
+ "loss": 0.0018,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 0.55,
1237
+ "learning_rate": 1.1443150536719041e-05,
1238
+ "loss": 0.4161,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 0.56,
1243
+ "learning_rate": 1.1350513193945574e-05,
1244
+ "loss": 0.0022,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 0.56,
1249
+ "learning_rate": 1.1257492780101466e-05,
1250
+ "loss": 0.0023,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 0.56,
1255
+ "learning_rate": 1.1164101795893467e-05,
1256
+ "loss": 0.0024,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 0.56,
1261
+ "learning_rate": 1.1070352791828055e-05,
1262
+ "loss": 0.0024,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 0.57,
1267
+ "learning_rate": 1.097625836652482e-05,
1268
+ "loss": 0.0027,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 0.57,
1273
+ "learning_rate": 1.0881831165023366e-05,
1274
+ "loss": 0.0024,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 0.57,
1279
+ "learning_rate": 1.0787083877084003e-05,
1280
+ "loss": 0.0022,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 0.57,
1285
+ "learning_rate": 1.0692029235482393e-05,
1286
+ "loss": 0.4213,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 0.58,
1291
+ "learning_rate": 1.059668001429845e-05,
1292
+ "loss": 0.4007,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 0.58,
1297
+ "learning_rate": 1.0501049027199663e-05,
1298
+ "loss": 0.7753,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 0.58,
1303
+ "learning_rate": 1.0405149125719116e-05,
1304
+ "loss": 0.004,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 0.58,
1309
+ "learning_rate": 1.0308993197528407e-05,
1310
+ "loss": 0.345,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 0.59,
1315
+ "learning_rate": 1.021259416470572e-05,
1316
+ "loss": 0.0063,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 0.59,
1321
+ "learning_rate": 1.0115964981999271e-05,
1322
+ "loss": 0.0091,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 0.59,
1327
+ "learning_rate": 1.0019118635086362e-05,
1328
+ "loss": 0.0115,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 0.6,
1333
+ "learning_rate": 9.922068138828272e-06,
1334
+ "loss": 0.0113,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 0.6,
1339
+ "learning_rate": 9.82482653552124e-06,
1340
+ "loss": 0.0098,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 0.6,
1345
+ "learning_rate": 9.727406893143751e-06,
1346
+ "loss": 0.0091,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 0.6,
1351
+ "learning_rate": 9.629822303600373e-06,
1352
+ "loss": 0.3068,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 0.61,
1357
+ "learning_rate": 9.532085880962384e-06,
1358
+ "loss": 0.0076,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 0.61,
1363
+ "learning_rate": 9.434210759705405e-06,
1364
+ "loss": 0.3079,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 0.61,
1369
+ "learning_rate": 9.336210092944308e-06,
1370
+ "loss": 0.3096,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 0.61,
1375
+ "learning_rate": 9.238097050665617e-06,
1376
+ "loss": 0.0079,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 0.62,
1381
+ "learning_rate": 9.139884817957625e-06,
1382
+ "loss": 0.0084,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 0.62,
1387
+ "learning_rate": 9.041586593238503e-06,
1388
+ "loss": 0.0088,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 0.62,
1393
+ "learning_rate": 8.943215586482603e-06,
1394
+ "loss": 0.0087,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 0.63,
1399
+ "learning_rate": 8.844785017445214e-06,
1400
+ "loss": 0.0074,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 0.63,
1405
+ "learning_rate": 8.74630811388601e-06,
1406
+ "loss": 0.0065,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 0.63,
1411
+ "learning_rate": 8.647798109791404e-06,
1412
+ "loss": 0.0053,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 0.63,
1417
+ "learning_rate": 8.549268243596078e-06,
1418
+ "loss": 0.0049,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 0.64,
1423
+ "learning_rate": 8.450731756403924e-06,
1424
+ "loss": 0.0038,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 0.64,
1429
+ "learning_rate": 8.352201890208596e-06,
1430
+ "loss": 0.0032,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 0.64,
1435
+ "learning_rate": 8.253691886113991e-06,
1436
+ "loss": 0.0023,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 0.64,
1441
+ "learning_rate": 8.155214982554786e-06,
1442
+ "loss": 0.002,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 0.65,
1447
+ "learning_rate": 8.056784413517399e-06,
1448
+ "loss": 0.0016,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 0.65,
1453
+ "learning_rate": 7.9584134067615e-06,
1454
+ "loss": 0.0012,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 0.65,
1459
+ "learning_rate": 7.860115182042377e-06,
1460
+ "loss": 0.0009,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 0.65,
1465
+ "learning_rate": 7.761902949334383e-06,
1466
+ "loss": 0.0007,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 0.66,
1471
+ "learning_rate": 7.663789907055692e-06,
1472
+ "loss": 0.0006,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 0.66,
1477
+ "learning_rate": 7.565789240294597e-06,
1478
+ "loss": 0.0005,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 0.66,
1483
+ "learning_rate": 7.467914119037615e-06,
1484
+ "loss": 0.0004,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 0.67,
1489
+ "learning_rate": 7.370177696399627e-06,
1490
+ "loss": 0.0004,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 0.67,
1495
+ "learning_rate": 7.2725931068562485e-06,
1496
+ "loss": 0.0003,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 0.67,
1501
+ "learning_rate": 7.175173464478762e-06,
1502
+ "loss": 0.0002,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 0.67,
1507
+ "learning_rate": 7.077931861171728e-06,
1508
+ "loss": 0.5576,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 0.68,
1513
+ "learning_rate": 6.98088136491364e-06,
1514
+ "loss": 0.0003,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 0.68,
1519
+ "learning_rate": 6.884035018000732e-06,
1520
+ "loss": 0.0003,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 0.68,
1525
+ "learning_rate": 6.787405835294282e-06,
1526
+ "loss": 0.0003,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 0.68,
1531
+ "learning_rate": 6.6910068024715965e-06,
1532
+ "loss": 0.0003,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 0.69,
1537
+ "learning_rate": 6.594850874280886e-06,
1538
+ "loss": 0.0003,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 0.69,
1543
+ "learning_rate": 6.498950972800336e-06,
1544
+ "loss": 0.0004,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 0.69,
1549
+ "learning_rate": 6.403319985701548e-06,
1550
+ "loss": 0.0003,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 0.7,
1555
+ "learning_rate": 6.307970764517606e-06,
1556
+ "loss": 0.0003,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 0.7,
1561
+ "learning_rate": 6.212916122915996e-06,
1562
+ "loss": 0.0003,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 0.7,
1567
+ "learning_rate": 6.118168834976634e-06,
1568
+ "loss": 0.0003,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 0.7,
1573
+ "learning_rate": 6.023741633475184e-06,
1574
+ "loss": 0.5394,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 0.71,
1579
+ "learning_rate": 5.929647208171945e-06,
1580
+ "loss": 0.5343,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 0.71,
1585
+ "learning_rate": 5.8358982041065366e-06,
1586
+ "loss": 0.0004,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 0.71,
1591
+ "learning_rate": 5.742507219898535e-06,
1592
+ "loss": 0.0004,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 0.71,
1597
+ "learning_rate": 5.649486806054428e-06,
1598
+ "loss": 0.0006,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 0.72,
1603
+ "learning_rate": 5.5568494632809586e-06,
1604
+ "loss": 0.9567,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 0.72,
1609
+ "learning_rate": 5.4646076408052225e-06,
1610
+ "loss": 0.0007,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 0.72,
1615
+ "learning_rate": 5.372773734701639e-06,
1616
+ "loss": 0.0011,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 0.73,
1621
+ "learning_rate": 5.2813600862260945e-06,
1622
+ "loss": 0.0013,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 0.73,
1627
+ "learning_rate": 5.190378980157438e-06,
1628
+ "loss": 0.0011,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 0.73,
1633
+ "learning_rate": 5.099842643146571e-06,
1634
+ "loss": 0.4145,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 0.73,
1639
+ "learning_rate": 5.009763242073346e-06,
1640
+ "loss": 0.0015,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 0.74,
1645
+ "learning_rate": 4.920152882411496e-06,
1646
+ "loss": 0.0017,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 0.74,
1651
+ "learning_rate": 4.831023606601841e-06,
1652
+ "loss": 0.0019,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 0.74,
1657
+ "learning_rate": 4.7423873924339135e-06,
1658
+ "loss": 0.0023,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 0.74,
1663
+ "learning_rate": 4.65425615143632e-06,
1664
+ "loss": 0.0024,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 0.75,
1669
+ "learning_rate": 4.566641727275993e-06,
1670
+ "loss": 0.0024,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 0.75,
1675
+ "learning_rate": 4.47955589416655e-06,
1676
+ "loss": 0.0026,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 0.75,
1681
+ "learning_rate": 4.393010355285995e-06,
1682
+ "loss": 0.7237,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 0.75,
1687
+ "learning_rate": 4.307016741203987e-06,
1688
+ "loss": 0.3495,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 0.76,
1693
+ "learning_rate": 4.221586608318814e-06,
1694
+ "loss": 0.0034,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 0.76,
1699
+ "learning_rate": 4.136731437304391e-06,
1700
+ "loss": 0.0037,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 0.76,
1705
+ "learning_rate": 4.052462631567405e-06,
1706
+ "loss": 0.004,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 0.77,
1711
+ "learning_rate": 3.968791515714841e-06,
1712
+ "loss": 0.324,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 0.77,
1717
+ "learning_rate": 3.885729334032118e-06,
1718
+ "loss": 0.0045,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 0.77,
1723
+ "learning_rate": 3.803287248971989e-06,
1724
+ "loss": 0.0053,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 0.77,
1729
+ "learning_rate": 3.7214763396544796e-06,
1730
+ "loss": 0.006,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 0.78,
1735
+ "learning_rate": 3.640307600377974e-06,
1736
+ "loss": 0.303,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 0.78,
1741
+ "learning_rate": 3.5597919391417568e-06,
1742
+ "loss": 0.0057,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 0.78,
1747
+ "learning_rate": 3.4799401761800915e-06,
1748
+ "loss": 0.0059,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 0.78,
1753
+ "learning_rate": 3.4007630425081546e-06,
1754
+ "loss": 0.0059,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 0.79,
1759
+ "learning_rate": 3.322271178479911e-06,
1760
+ "loss": 0.0068,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 0.79,
1765
+ "learning_rate": 3.2444751323581937e-06,
1766
+ "loss": 0.0054,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 0.79,
1771
+ "learning_rate": 3.1673853588971697e-06,
1772
+ "loss": 0.0054,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 0.8,
1777
+ "learning_rate": 3.091012217937342e-06,
1778
+ "loss": 0.0048,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 0.8,
1783
+ "learning_rate": 3.015365973013345e-06,
1784
+ "loss": 0.0051,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 0.8,
1789
+ "learning_rate": 2.940456789974641e-06,
1790
+ "loss": 0.0049,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 0.8,
1795
+ "learning_rate": 2.866294735619384e-06,
1796
+ "loss": 0.0054,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 0.81,
1801
+ "learning_rate": 2.792889776341558e-06,
1802
+ "loss": 0.3087,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 0.81,
1807
+ "learning_rate": 2.720251776791648e-06,
1808
+ "loss": 0.0037,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 0.81,
1813
+ "learning_rate": 2.648390498550938e-06,
1814
+ "loss": 0.0036,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 0.81,
1819
+ "learning_rate": 2.577315598819698e-06,
1820
+ "loss": 0.3172,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 0.82,
1825
+ "learning_rate": 2.507036629119391e-06,
1826
+ "loss": 0.3122,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 0.82,
1831
+ "learning_rate": 2.437563034009059e-06,
1832
+ "loss": 0.0034,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 0.82,
1837
+ "learning_rate": 2.368904149816109e-06,
1838
+ "loss": 0.004,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 0.82,
1843
+ "learning_rate": 2.3010692033816333e-06,
1844
+ "loss": 0.004,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 0.83,
1849
+ "learning_rate": 2.2340673108204515e-06,
1850
+ "loss": 0.0038,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 0.83,
1855
+ "learning_rate": 2.1679074762960097e-06,
1856
+ "loss": 0.3062,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 0.83,
1861
+ "learning_rate": 2.102598590810361e-06,
1862
+ "loss": 0.0039,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 0.84,
1867
+ "learning_rate": 2.038149431009313e-06,
1868
+ "loss": 0.0043,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 0.84,
1873
+ "learning_rate": 1.9745686580029813e-06,
1874
+ "loss": 0.0039,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 0.84,
1879
+ "learning_rate": 1.9118648162018354e-06,
1880
+ "loss": 0.004,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 0.84,
1885
+ "learning_rate": 1.8500463321684535e-06,
1886
+ "loss": 0.0034,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 0.85,
1891
+ "learning_rate": 1.7891215134851086e-06,
1892
+ "loss": 0.0043,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 0.85,
1897
+ "learning_rate": 1.7290985476373226e-06,
1898
+ "loss": 0.0037,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 0.85,
1903
+ "learning_rate": 1.6699855009135987e-06,
1904
+ "loss": 0.0038,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 0.85,
1909
+ "learning_rate": 1.6117903173213991e-06,
1910
+ "loss": 0.3084,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 0.86,
1915
+ "learning_rate": 1.5545208175195947e-06,
1916
+ "loss": 0.0034,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 0.86,
1921
+ "learning_rate": 1.4981846977674559e-06,
1922
+ "loss": 0.2993,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 0.86,
1927
+ "learning_rate": 1.442789528890392e-06,
1928
+ "loss": 0.0048,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 0.87,
1933
+ "learning_rate": 1.3883427552625214e-06,
1934
+ "loss": 0.0036,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 0.87,
1939
+ "learning_rate": 1.334851693806252e-06,
1940
+ "loss": 0.003,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 0.87,
1945
+ "learning_rate": 1.2823235330089876e-06,
1946
+ "loss": 0.0035,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 0.87,
1951
+ "learning_rate": 1.2307653319570816e-06,
1952
+ "loss": 0.0034,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 0.88,
1957
+ "learning_rate": 1.180184019387201e-06,
1958
+ "loss": 0.0036,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 0.88,
1963
+ "learning_rate": 1.1305863927551828e-06,
1964
+ "loss": 0.3095,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 0.88,
1969
+ "learning_rate": 1.0819791173225632e-06,
1970
+ "loss": 0.0035,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 0.88,
1975
+ "learning_rate": 1.0343687252608348e-06,
1976
+ "loss": 0.0032,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 0.89,
1981
+ "learning_rate": 9.877616147736322e-07,
1982
+ "loss": 0.0029,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 0.89,
1987
+ "learning_rate": 9.42164049236876e-07,
1988
+ "loss": 0.2967,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 0.89,
1993
+ "learning_rate": 8.975821563570762e-07,
1994
+ "loss": 0.0036,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 0.89,
1999
+ "learning_rate": 8.540219273478374e-07,
2000
+ "loss": 0.0034,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 0.9,
2005
+ "learning_rate": 8.114892161247328e-07,
2006
+ "loss": 0.0036,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 0.9,
2011
+ "learning_rate": 7.699897385185995e-07,
2012
+ "loss": 0.0033,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 0.9,
2017
+ "learning_rate": 7.295290715074186e-07,
2018
+ "loss": 0.0029,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 0.91,
2023
+ "learning_rate": 6.901126524668424e-07,
2024
+ "loss": 0.0027,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 0.91,
2029
+ "learning_rate": 6.51745778439476e-07,
2030
+ "loss": 0.0032,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 0.91,
2035
+ "learning_rate": 6.144336054230359e-07,
2036
+ "loss": 0.0031,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 0.91,
2041
+ "learning_rate": 5.781811476774417e-07,
2042
+ "loss": 0.0031,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 0.92,
2047
+ "learning_rate": 5.429932770509767e-07,
2048
+ "loss": 0.003,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 0.92,
2053
+ "learning_rate": 5.088747223255645e-07,
2054
+ "loss": 0.0028,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 0.92,
2059
+ "learning_rate": 4.758300685812951e-07,
2060
+ "loss": 0.3042,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 0.92,
2065
+ "learning_rate": 4.438637565802444e-07,
2066
+ "loss": 0.0031,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 0.93,
2071
+ "learning_rate": 4.1298008216969677e-07,
2072
+ "loss": 0.0029,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 0.93,
2077
+ "learning_rate": 3.8318319570483964e-07,
2078
+ "loss": 0.003,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 0.93,
2083
+ "learning_rate": 3.544771014910102e-07,
2084
+ "loss": 0.0031,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 0.94,
2089
+ "learning_rate": 3.268656572455751e-07,
2090
+ "loss": 0.0028,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 0.94,
2095
+ "learning_rate": 3.003525735794959e-07,
2096
+ "loss": 0.0028,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 0.94,
2101
+ "learning_rate": 2.749414134986797e-07,
2102
+ "loss": 0.0025,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 0.94,
2107
+ "learning_rate": 2.506355919251527e-07,
2108
+ "loss": 0.0027,
2109
+ "step": 350
2110
+ },
2111
+ {
2112
+ "epoch": 0.95,
2113
+ "learning_rate": 2.2743837523814915e-07,
2114
+ "loss": 0.309,
2115
+ "step": 351
2116
+ },
2117
+ {
2118
+ "epoch": 0.95,
2119
+ "learning_rate": 2.053528808351413e-07,
2120
+ "loss": 0.313,
2121
+ "step": 352
2122
+ },
2123
+ {
2124
+ "epoch": 0.95,
2125
+ "learning_rate": 1.8438207671291158e-07,
2126
+ "loss": 0.0029,
2127
+ "step": 353
2128
+ },
2129
+ {
2130
+ "epoch": 0.95,
2131
+ "learning_rate": 1.6452878106868956e-07,
2132
+ "loss": 0.0028,
2133
+ "step": 354
2134
+ },
2135
+ {
2136
+ "epoch": 0.96,
2137
+ "learning_rate": 1.4579566192142508e-07,
2138
+ "loss": 0.0027,
2139
+ "step": 355
2140
+ },
2141
+ {
2142
+ "epoch": 0.96,
2143
+ "learning_rate": 1.281852367532435e-07,
2144
+ "loss": 0.0032,
2145
+ "step": 356
2146
+ },
2147
+ {
2148
+ "epoch": 0.96,
2149
+ "learning_rate": 1.1169987217112288e-07,
2150
+ "loss": 0.0029,
2151
+ "step": 357
2152
+ },
2153
+ {
2154
+ "epoch": 0.96,
2155
+ "learning_rate": 9.634178358886187e-08,
2156
+ "loss": 0.0029,
2157
+ "step": 358
2158
+ },
2159
+ {
2160
+ "epoch": 0.97,
2161
+ "learning_rate": 8.211303492935335e-08,
2162
+ "loss": 0.003,
2163
+ "step": 359
2164
+ },
2165
+ {
2166
+ "epoch": 0.97,
2167
+ "learning_rate": 6.90155383472208e-08,
2168
+ "loss": 0.003,
2169
+ "step": 360
2170
+ },
2171
+ {
2172
+ "epoch": 0.97,
2173
+ "learning_rate": 5.705105397184973e-08,
2174
+ "loss": 0.3166,
2175
+ "step": 361
2176
+ },
2177
+ {
2178
+ "epoch": 0.98,
2179
+ "learning_rate": 4.622118967085098e-08,
2180
+ "loss": 0.0028,
2181
+ "step": 362
2182
+ },
2183
+ {
2184
+ "epoch": 0.98,
2185
+ "learning_rate": 3.6527400833985035e-08,
2186
+ "loss": 0.0027,
2187
+ "step": 363
2188
+ },
2189
+ {
2190
+ "epoch": 0.98,
2191
+ "learning_rate": 2.7970990177575762e-08,
2192
+ "loss": 0.0026,
2193
+ "step": 364
2194
+ },
2195
+ {
2196
+ "epoch": 0.98,
2197
+ "learning_rate": 2.055310756944184e-08,
2198
+ "loss": 0.003,
2199
+ "step": 365
2200
+ },
2201
+ {
2202
+ "epoch": 0.99,
2203
+ "learning_rate": 1.4274749874372328e-08,
2204
+ "loss": 0.003,
2205
+ "step": 366
2206
+ },
2207
+ {
2208
+ "epoch": 0.99,
2209
+ "learning_rate": 9.13676082016046e-09,
2210
+ "loss": 0.3076,
2211
+ "step": 367
2212
+ },
2213
+ {
2214
+ "epoch": 0.99,
2215
+ "learning_rate": 5.1398308842146575e-09,
2216
+ "loss": 0.0027,
2217
+ "step": 368
2218
+ },
2219
+ {
2220
+ "epoch": 0.99,
2221
+ "learning_rate": 2.284497200773061e-09,
2222
+ "loss": 0.0028,
2223
+ "step": 369
2224
+ },
2225
+ {
2226
+ "epoch": 1.0,
2227
+ "learning_rate": 5.711434887160083e-10,
2228
+ "loss": 0.0028,
2229
+ "step": 370
2230
+ },
2231
+ {
2232
+ "epoch": 1.0,
2233
+ "learning_rate": 0.0,
2234
+ "loss": 0.0028,
2235
+ "step": 371
2236
+ },
2237
+ {
2238
+ "epoch": 1.0,
2239
+ "eval_loss": 0.0026911406312137842,
2240
+ "eval_runtime": 1.2764,
2241
+ "eval_samples_per_second": 11.752,
2242
+ "eval_steps_per_second": 3.134,
2243
+ "step": 371
2244
+ }
2245
+ ],
2246
+ "logging_steps": 1,
2247
+ "max_steps": 371,
2248
+ "num_train_epochs": 1,
2249
+ "save_steps": 500,
2250
+ "total_flos": 318496730775552.0,
2251
+ "trial_name": null,
2252
+ "trial_params": null
2253
+ }
checkpoint-371/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c4d56f241a2560d0af97f872dca8d7cbee58d237f8fa24d8e9f4ad8c2bc8140
3
+ size 4475
config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "TheBloke/Llama-2-7B-GPTQ",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_length": 4096,
14
+ "max_position_embeddings": 4096,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 32,
18
+ "num_key_value_heads": 32,
19
+ "pad_token_id": 0,
20
+ "pretraining_tp": 1,
21
+ "quantization_config": {
22
+ "batch_size": 1,
23
+ "bits": 4,
24
+ "block_name_to_quantize": null,
25
+ "damp_percent": 0.01,
26
+ "dataset": null,
27
+ "desc_act": false,
28
+ "disable_exllama": true,
29
+ "group_size": 128,
30
+ "max_input_length": null,
31
+ "model_seqlen": null,
32
+ "module_name_preceding_first_block": null,
33
+ "pad_token_id": null,
34
+ "quant_method": "gptq",
35
+ "sym": true,
36
+ "tokenizer": null,
37
+ "true_sequential": true,
38
+ "use_cuda_fp16": false
39
+ },
40
+ "rms_norm_eps": 1e-05,
41
+ "rope_scaling": null,
42
+ "rope_theta": 10000.0,
43
+ "tie_word_embeddings": false,
44
+ "torch_dtype": "float16",
45
+ "transformers_version": "4.34.1",
46
+ "use_cache": false,
47
+ "vocab_size": 32000
48
+ }
runs/Nov16_10-22-42_compute-3-6.hamming.cluster/events.out.tfevents.1700158964.compute-3-6.hamming.cluster.84949.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b58d0f1a5cea41a8f57e6820d1f6f4f59033f814a111fff3c49672e87347f6e
3
+ size 63604
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "bos_token": "<s>",
31
+ "clean_up_tokenization_spaces": false,
32
+ "eos_token": "</s>",
33
+ "legacy": true,
34
+ "model_max_length": 1000000000000000019884624838656,
35
+ "pad_token": "</s>",
36
+ "sp_model_kwargs": {},
37
+ "spaces_between_special_tokens": false,
38
+ "tokenizer_class": "LlamaTokenizer",
39
+ "trust_remote_code": false,
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": true,
42
+ "use_fast": true
43
+ }