--- license: mit datasets: - mstafam/Kilter-Board-Dataset pipeline_tag: text2text-generation --- # GenClimb: AI-Generated Climbing Routes for Interactive Training Boards GenClimb is a generative AI model designed to create climbing routes for Standardized Interactive Climbing Training Boards (SICTBs). It a seq2seq transformer architecture, GenClimb generates climbs based on board layouts and climb difficulties. ## Model Details ### Architecture - **Dimension**: 512 - **Attention Heads**: 4 - **Layers**: 5 - **Feed-Forward Dimension**: 1024 - **Dropout Rate**: 0.15 - **Activation Function**: GELU - **Layer Normalization Epsilon**: 1e-5 ### Training Configuration - **Device**: CUDA (1x NVIDIA GeForce RTX 3070) - **Learning Rate**: 1e-4 - **Epochs**: 8 - **Weight Decay**: 0.0125 - **Batch Size**: 32 - **Train/Test Split**: 90/10 ### Performance Metrics - **Training Time**: 12 hours and 6 minutes - **Final Loss**: 2.114803 ## Dataset The model is trained on the [Kilter-Board-Dataset](https://huggingface.co/datasets/mstafam/Kilter-Board-Dataset), a comprehensive collection of climbing routes curated with the help of the [BoardLib utility](https://github.com/lemeryfertitta/BoardLib) by lemeryfertitta.