Adding PPO model for solving LunarLander-v2
Browse files- README.md +37 -0
- config.json +1 -0
- first_PPO.zip +3 -0
- first_PPO/_stable_baselines3_version +1 -0
- first_PPO/data +95 -0
- first_PPO/policy.optimizer.pth +3 -0
- first_PPO/policy.pth +3 -0
- first_PPO/pytorch_variables.pth +3 -0
- first_PPO/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 267.51 +/- 18.53
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcd4ec00f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcd4ec04040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcd4ec040d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcd4ec04160>", "_build": "<function ActorCriticPolicy._build at 0x7fcd4ec041f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fcd4ec04280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcd4ec04310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcd4ec043a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcd4ec04430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcd4ec044c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcd4ec04550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcd4ec045e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcd4ebff570>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678212328461376115, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMC7Fb7SpvW7InaKu9kkvbmaNz89Re2eOgAAgD8AAIA/mo0WvFYZET2NQki9Z4DpvcbiBL0ORwO8AAAAAAAAAADN//k95Ew7PlgRAL6z0Jm+HysgvTJTlr0AAAAAAAAAANbPyL4YR/Q+Dq6MvW70B7/rE22+tNuVPQAAAAAAAAAAM6P6PChjED+953281AUnvz9IZLwiiJY6AAAAAAAAAABAckK+9DyNvDrgsbtyyRC6F9z9PdaS5joAAIA/AACAPzq8Qj4CLWw+AC3tvnKjh74nPZm9Vo4qvgAAAAAAAAAAMxVGPpi1Xj/KrH4+Af4zv9lfKj7TqB89AAAAAAAAAACtR0Y+SKedvGe+NLvg7Io5YLYNvuujZzoAAIA/AACAPw3QhD3h2K66UkrnN28A4jLreVw6VlYEtwAAgD8AAAAAjYDSvXCj5T7rk569j+D4vskNxb11xGo9AAAAAAAAAABm+rO8qZkIPQOhfj6pbvu9aStmPWaRBT0AAAAAAAAAAO1USL4DvXS8jaynuuPJ1rjTbNc9nZitOQAAgD8AAIA/+s4XvgrrMDqc7yg8bW2DuaJPXLzwLWg6AACAPwAAgD9Ge0K+lLq3vM1F1rpbl0K5q30ePmAcDToAAIA/AACAP/Yya77gUJI+SIi6PmQyob617qe9x5CcPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI198SgD/HcUCUhpRSlIwBbJRNLwKMAXSUR0CYRWBbOeJ6dX2UKGgGaAloD0MIBvUtc3ryckCUhpRSlGgVTRIBaBZHQJhGhSwW30B1fZQoaAZoCWgPQwhAho4d1NBiQJSGlFKUaBVN6ANoFkdAmEb9gKF7D3V9lChoBmgJaA9DCKUWSiYnYnBAlIaUUpRoFUuxaBZHQJhHIcNpdrx1fZQoaAZoCWgPQwiSyhRzEN9xQJSGlFKUaBVL1mgWR0CYR08W9DhMdX2UKGgGaAloD0MIZtr+ldWrckCUhpRSlGgVTZoBaBZHQJhHhp1zQu51fZQoaAZoCWgPQwifdCLBVG9tQJSGlFKUaBVLu2gWR0CYR84vexfOdX2UKGgGaAloD0MIgIC1apc2cECUhpRSlGgVS71oFkdAmEhdFfAsTXV9lChoBmgJaA9DCIS6SKEszXJAlIaUUpRoFU02AWgWR0CYSLSZ0CA+dX2UKGgGaAloD0MIgV8jSRBAcUCUhpRSlGgVS/poFkdAmEloLCvX9XV9lChoBmgJaA9DCLzP8dFiXXJAlIaUUpRoFUvqaBZHQJhKvitJWeZ1fZQoaAZoCWgPQwhkP4uliI9wQJSGlFKUaBVLz2gWR0CYSw/9pAUtdX2UKGgGaAloD0MI3qzB+2ofc0CUhpRSlGgVTTQBaBZHQJhLNhQWN3p1fZQoaAZoCWgPQwhQGmoUEs1wQJSGlFKUaBVNxgJoFkdAmExdbHIZInV9lChoBmgJaA9DCC7iOzFrlXJAlIaUUpRoFUvHaBZHQJhMbY02tMh1fZQoaAZoCWgPQwg3+wPldrFyQJSGlFKUaBVLxWgWR0CYTIGM4tHydX2UKGgGaAloD0MIPsqIC0Bkb0CUhpRSlGgVS8RoFkdAmEyoA80UGnV9lChoBmgJaA9DCPHVjuLcYXNAlIaUUpRoFUu9aBZHQJhM9o8IRiB1fZQoaAZoCWgPQwhFuTR+4a9yQJSGlFKUaBVNVQFoFkdAmE0HktEofHV9lChoBmgJaA9DCELooEt4+XJAlIaUUpRoFUvTaBZHQJhNOr/82rJ1fZQoaAZoCWgPQwiK52wBoRxyQJSGlFKUaBVNVwFoFkdAmE2HskY4yXV9lChoBmgJaA9DCAa5izAFjXBAlIaUUpRoFUueaBZHQJhNqxNZeRh1fZQoaAZoCWgPQwiUT49tmWFyQJSGlFKUaBVL4WgWR0CYTl0Nz8xcdX2UKGgGaAloD0MIDMufbwsYcUCUhpRSlGgVS+xoFkdAmE71JL/S6XV9lChoBmgJaA9DCBGq1OwBl29AlIaUUpRoFUvHaBZHQJhP5X8wYch1fZQoaAZoCWgPQwjgRzXsN7lwQJSGlFKUaBVLrmgWR0CYURHRCx/vdX2UKGgGaAloD0MIHLKBdHE3cECUhpRSlGgVS79oFkdAmFFkZvUBn3V9lChoBmgJaA9DCAJhp1g1CHFAlIaUUpRoFUv2aBZHQJhRfTy8SPF1fZQoaAZoCWgPQwjPMLWljpdyQJSGlFKUaBVLzmgWR0CYUa2A5JbudX2UKGgGaAloD0MImQ0yyYiAcECUhpRSlGgVS9JoFkdAmFHZIpYs/nV9lChoBmgJaA9DCC3ovTFElHNAlIaUUpRoFUvDaBZHQJhSCKgqVhV1fZQoaAZoCWgPQwhKCFbVC8RzQJSGlFKUaBVNFgFoFkdAmFJ4nKGL1nV9lChoBmgJaA9DCI6wqIgTYXBAlIaUUpRoFUvPaBZHQJhS8oy9EkV1fZQoaAZoCWgPQwgWpu81xFZyQJSGlFKUaBVLoWgWR0CYU0NMGorGdX2UKGgGaAloD0MIfH2tS02ocUCUhpRSlGgVS+xoFkdAmFPeDjBEa3V9lChoBmgJaA9DCPa0w18TjXBAlIaUUpRoFUvgaBZHQJhUTpNbkfd1fZQoaAZoCWgPQwg+r3jqUZNwQJSGlFKUaBVLxmgWR0CYVTkiD/VBdX2UKGgGaAloD0MI7E53nvjOb0CUhpRSlGgVS7JoFkdAmFXnRPXTVnV9lChoBmgJaA9DCFYL7DERYHBAlIaUUpRoFUuxaBZHQJhWqZBsyi51fZQoaAZoCWgPQwh1BkZelhBxQJSGlFKUaBVLxGgWR0CYVtcGC7K8dX2UKGgGaAloD0MICmmNQWcUcECUhpRSlGgVS65oFkdAmFdQxFiKBXV9lChoBmgJaA9DCGmOrPwyiG9AlIaUUpRoFUvEaBZHQJhXd/2Cdz51fZQoaAZoCWgPQwi+2HvxxdRxQJSGlFKUaBVL1WgWR0CYV5WQOnVHdX2UKGgGaAloD0MINJ2dDE5eckCUhpRSlGgVTQkBaBZHQJhY0hJRO1x1fZQoaAZoCWgPQwiWXMXidxJxQJSGlFKUaBVL1GgWR0CYWPyLAHmjdX2UKGgGaAloD0MIh4cwfpoRb0CUhpRSlGgVS75oFkdAmFlURJ2+wnV9lChoBmgJaA9DCOAqTyDsCnJAlIaUUpRoFUvdaBZHQJhZimwaBI51fZQoaAZoCWgPQwjqymd5HkdwQJSGlFKUaBVL5mgWR0CYWvHp8neBdX2UKGgGaAloD0MI9gzhmCUvcUCUhpRSlGgVS8VoFkdAmFr5KjBVMnV9lChoBmgJaA9DCPd4IR1es3FAlIaUUpRoFUvLaBZHQJhb5oWYWtV1fZQoaAZoCWgPQwg5KGGmLeRxQJSGlFKUaBVLt2gWR0CYXBQVsUItdX2UKGgGaAloD0MIeo8zTdg9YkCUhpRSlGgVTegDaBZHQJhdNI3BHkN1fZQoaAZoCWgPQwiU2/Y9KmpwQJSGlFKUaBVLvmgWR0CYXUClJpWWdX2UKGgGaAloD0MI88e0Ng1ZckCUhpRSlGgVS+RoFkdAmF4MeOn2qXV9lChoBmgJaA9DCPa0w18TwG9AlIaUUpRoFUu3aBZHQJhfMy2x6fJ1fZQoaAZoCWgPQwiKjuTynxtuQJSGlFKUaBVLwWgWR0CYYEh4dIXkdX2UKGgGaAloD0MIQrCqXr5Lc0CUhpRSlGgVS81oFkdAmGEzxXnyNHV9lChoBmgJaA9DCCXmWUmr8XFAlIaUUpRoFUvwaBZHQJhhmrOqvNh1fZQoaAZoCWgPQwjf36C9eoJxQJSGlFKUaBVLr2gWR0CYYghf0EowdX2UKGgGaAloD0MI628JwL+ScECUhpRSlGgVS6ZoFkdAmGS9jXnQpnV9lChoBmgJaA9DCH5xqUrb0GFAlIaUUpRoFU3oA2gWR0CYZZ7lJYkndX2UKGgGaAloD0MI4V0u4vvTcUCUhpRSlGgVS+ZoFkdAmGZAn2Iwd3V9lChoBmgJaA9DCHUBLzNs2HBAlIaUUpRoFUu4aBZHQJhme01IiC91fZQoaAZoCWgPQwgKLev+MbVxQJSGlFKUaBVL1mgWR0CYZwuP3i71dX2UKGgGaAloD0MINC4cCEkfckCUhpRSlGgVTRsBaBZHQJhnGPp6hQF1fZQoaAZoCWgPQwhvK702Gx1xQJSGlFKUaBVLsmgWR0CYaHxL0z0pdX2UKGgGaAloD0MIxVkRNVFPc0CUhpRSlGgVTS4BaBZHQJhpT0th/iJ1fZQoaAZoCWgPQwjDnQsjPdNyQJSGlFKUaBVLvGgWR0CYadS+QEIPdX2UKGgGaAloD0MIujE9YQndckCUhpRSlGgVS/5oFkdAmGsAzLwF1XV9lChoBmgJaA9DCGJp4Ec1CXFAlIaUUpRoFUvaaBZHQJhsK2nbZe11fZQoaAZoCWgPQwi+TX/2Y2lxQJSGlFKUaBVL52gWR0CYbFBv73wkdX2UKGgGaAloD0MIDRtl/Sa4cUCUhpRSlGgVS69oFkdAmG89A1Nxl3V9lChoBmgJaA9DCNrHCn7bKHFAlIaUUpRoFUvmaBZHQJhvjd/J/5N1fZQoaAZoCWgPQwjzc0NT9hNhQJSGlFKUaBVN6ANoFkdAmHDdKdxyXHV9lChoBmgJaA9DCCGP4EaKtXFAlIaUUpRoFUu1aBZHQJhxG63AmAt1fZQoaAZoCWgPQwik/nqFhYFkQJSGlFKUaBVN6ANoFkdAmHE/zjFQ23V9lChoBmgJaA9DCOMW83ODu3JAlIaUUpRoFUvmaBZHQJhxYZ3s5XF1fZQoaAZoCWgPQwjIfECgsxRxQJSGlFKUaBVL3WgWR0CYcYjfek57dX2UKGgGaAloD0MIsP7PYT7Tb0CUhpRSlGgVS7poFkdAmHL9Qj2SMnV9lChoBmgJaA9DCNmY1xGHYHBAlIaUUpRoFUviaBZHQJhzHmDDjzZ1fZQoaAZoCWgPQwiJl6dzRQxwQJSGlFKUaBVLwGgWR0CYc+hn8KoidX2UKGgGaAloD0MILc2tEFb1b0CUhpRSlGgVS9FoFkdAmHSB2bG3nnV9lChoBmgJaA9DCPlISnpYzXFAlIaUUpRoFUuYaBZHQJh2B9tuUEB1fZQoaAZoCWgPQwiI9xxYzsNyQJSGlFKUaBVNSQFoFkdAmHa11SwW33V9lChoBmgJaA9DCOhLb38ufXBAlIaUUpRoFUu1aBZHQJh3IQ6IWP91fZQoaAZoCWgPQwham8b22tpvQJSGlFKUaBVLxGgWR0CYd1TOPeYVdX2UKGgGaAloD0MI5KHvbiWlcUCUhpRSlGgVS9NoFkdAmHftqgyuZHV9lChoBmgJaA9DCLCvdakRdnBAlIaUUpRoFUveaBZHQJh4CBvrGBF1fZQoaAZoCWgPQwhKtyVywXRwQJSGlFKUaBVL02gWR0CYed9cry2AdX2UKGgGaAloD0MIxAWgUXo5cECUhpRSlGgVS6xoFkdAmHohPoFFD3V9lChoBmgJaA9DCDSAt0DC+3FAlIaUUpRoFUvvaBZHQJh6qfHxSYR1fZQoaAZoCWgPQwiwj05dOYxxQJSGlFKUaBVLrmgWR0CYfTXkHUtqdX2UKGgGaAloD0MId4NorWhMZUCUhpRSlGgVTegDaBZHQJh9jOqvNeN1fZQoaAZoCWgPQwjLuRRXVYhzQJSGlFKUaBVNKgFoFkdAmH3dzwMH8nV9lChoBmgJaA9DCALyJVTwoGFAlIaUUpRoFU3oA2gWR0CYfd2pyZKGdX2UKGgGaAloD0MItYgoJq8GcECUhpRSlGgVS8BoFkdAmH5h33YcvXV9lChoBmgJaA9DCOy+Y3gsN3FAlIaUUpRoFUvFaBZHQJh+odjoZAJ1fZQoaAZoCWgPQwhKYkm5ewxyQJSGlFKUaBVNBwFoFkdAmH7Tst03fnV9lChoBmgJaA9DCNVCyeRUW3BAlIaUUpRoFUv3aBZHQJh/QQVbiZR1fZQoaAZoCWgPQwj3Hi457kNxQJSGlFKUaBVLrWgWR0CYf7Ttb9qDdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
first_PPO.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44ca60f4118bbf4711d57afbeb946958e0db517efe4d0b364fafcc8fe5ffda5d
|
3 |
+
size 147319
|
first_PPO/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
first_PPO/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fcd4ec00f70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcd4ec04040>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcd4ec040d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcd4ec04160>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fcd4ec041f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fcd4ec04280>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcd4ec04310>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcd4ec043a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fcd4ec04430>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcd4ec044c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcd4ec04550>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcd4ec045e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fcd4ebff570>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1678212328461376115,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMC7Fb7SpvW7InaKu9kkvbmaNz89Re2eOgAAgD8AAIA/mo0WvFYZET2NQki9Z4DpvcbiBL0ORwO8AAAAAAAAAADN//k95Ew7PlgRAL6z0Jm+HysgvTJTlr0AAAAAAAAAANbPyL4YR/Q+Dq6MvW70B7/rE22+tNuVPQAAAAAAAAAAM6P6PChjED+953281AUnvz9IZLwiiJY6AAAAAAAAAABAckK+9DyNvDrgsbtyyRC6F9z9PdaS5joAAIA/AACAPzq8Qj4CLWw+AC3tvnKjh74nPZm9Vo4qvgAAAAAAAAAAMxVGPpi1Xj/KrH4+Af4zv9lfKj7TqB89AAAAAAAAAACtR0Y+SKedvGe+NLvg7Io5YLYNvuujZzoAAIA/AACAPw3QhD3h2K66UkrnN28A4jLreVw6VlYEtwAAgD8AAAAAjYDSvXCj5T7rk569j+D4vskNxb11xGo9AAAAAAAAAABm+rO8qZkIPQOhfj6pbvu9aStmPWaRBT0AAAAAAAAAAO1USL4DvXS8jaynuuPJ1rjTbNc9nZitOQAAgD8AAIA/+s4XvgrrMDqc7yg8bW2DuaJPXLzwLWg6AACAPwAAgD9Ge0K+lLq3vM1F1rpbl0K5q30ePmAcDToAAIA/AACAP/Yya77gUJI+SIi6PmQyob617qe9x5CcPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVMxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI198SgD/HcUCUhpRSlIwBbJRNLwKMAXSUR0CYRWBbOeJ6dX2UKGgGaAloD0MIBvUtc3ryckCUhpRSlGgVTRIBaBZHQJhGhSwW30B1fZQoaAZoCWgPQwhAho4d1NBiQJSGlFKUaBVN6ANoFkdAmEb9gKF7D3V9lChoBmgJaA9DCKUWSiYnYnBAlIaUUpRoFUuxaBZHQJhHIcNpdrx1fZQoaAZoCWgPQwiSyhRzEN9xQJSGlFKUaBVL1mgWR0CYR08W9DhMdX2UKGgGaAloD0MIZtr+ldWrckCUhpRSlGgVTZoBaBZHQJhHhp1zQu51fZQoaAZoCWgPQwifdCLBVG9tQJSGlFKUaBVLu2gWR0CYR84vexfOdX2UKGgGaAloD0MIgIC1apc2cECUhpRSlGgVS71oFkdAmEhdFfAsTXV9lChoBmgJaA9DCIS6SKEszXJAlIaUUpRoFU02AWgWR0CYSLSZ0CA+dX2UKGgGaAloD0MIgV8jSRBAcUCUhpRSlGgVS/poFkdAmEloLCvX9XV9lChoBmgJaA9DCLzP8dFiXXJAlIaUUpRoFUvqaBZHQJhKvitJWeZ1fZQoaAZoCWgPQwhkP4uliI9wQJSGlFKUaBVLz2gWR0CYSw/9pAUtdX2UKGgGaAloD0MI3qzB+2ofc0CUhpRSlGgVTTQBaBZHQJhLNhQWN3p1fZQoaAZoCWgPQwhQGmoUEs1wQJSGlFKUaBVNxgJoFkdAmExdbHIZInV9lChoBmgJaA9DCC7iOzFrlXJAlIaUUpRoFUvHaBZHQJhMbY02tMh1fZQoaAZoCWgPQwg3+wPldrFyQJSGlFKUaBVLxWgWR0CYTIGM4tHydX2UKGgGaAloD0MIPsqIC0Bkb0CUhpRSlGgVS8RoFkdAmEyoA80UGnV9lChoBmgJaA9DCPHVjuLcYXNAlIaUUpRoFUu9aBZHQJhM9o8IRiB1fZQoaAZoCWgPQwhFuTR+4a9yQJSGlFKUaBVNVQFoFkdAmE0HktEofHV9lChoBmgJaA9DCELooEt4+XJAlIaUUpRoFUvTaBZHQJhNOr/82rJ1fZQoaAZoCWgPQwiK52wBoRxyQJSGlFKUaBVNVwFoFkdAmE2HskY4yXV9lChoBmgJaA9DCAa5izAFjXBAlIaUUpRoFUueaBZHQJhNqxNZeRh1fZQoaAZoCWgPQwiUT49tmWFyQJSGlFKUaBVL4WgWR0CYTl0Nz8xcdX2UKGgGaAloD0MIDMufbwsYcUCUhpRSlGgVS+xoFkdAmE71JL/S6XV9lChoBmgJaA9DCBGq1OwBl29AlIaUUpRoFUvHaBZHQJhP5X8wYch1fZQoaAZoCWgPQwjgRzXsN7lwQJSGlFKUaBVLrmgWR0CYURHRCx/vdX2UKGgGaAloD0MIHLKBdHE3cECUhpRSlGgVS79oFkdAmFFkZvUBn3V9lChoBmgJaA9DCAJhp1g1CHFAlIaUUpRoFUv2aBZHQJhRfTy8SPF1fZQoaAZoCWgPQwjPMLWljpdyQJSGlFKUaBVLzmgWR0CYUa2A5JbudX2UKGgGaAloD0MImQ0yyYiAcECUhpRSlGgVS9JoFkdAmFHZIpYs/nV9lChoBmgJaA9DCC3ovTFElHNAlIaUUpRoFUvDaBZHQJhSCKgqVhV1fZQoaAZoCWgPQwhKCFbVC8RzQJSGlFKUaBVNFgFoFkdAmFJ4nKGL1nV9lChoBmgJaA9DCI6wqIgTYXBAlIaUUpRoFUvPaBZHQJhS8oy9EkV1fZQoaAZoCWgPQwgWpu81xFZyQJSGlFKUaBVLoWgWR0CYU0NMGorGdX2UKGgGaAloD0MIfH2tS02ocUCUhpRSlGgVS+xoFkdAmFPeDjBEa3V9lChoBmgJaA9DCPa0w18TjXBAlIaUUpRoFUvgaBZHQJhUTpNbkfd1fZQoaAZoCWgPQwg+r3jqUZNwQJSGlFKUaBVLxmgWR0CYVTkiD/VBdX2UKGgGaAloD0MI7E53nvjOb0CUhpRSlGgVS7JoFkdAmFXnRPXTVnV9lChoBmgJaA9DCFYL7DERYHBAlIaUUpRoFUuxaBZHQJhWqZBsyi51fZQoaAZoCWgPQwh1BkZelhBxQJSGlFKUaBVLxGgWR0CYVtcGC7K8dX2UKGgGaAloD0MICmmNQWcUcECUhpRSlGgVS65oFkdAmFdQxFiKBXV9lChoBmgJaA9DCGmOrPwyiG9AlIaUUpRoFUvEaBZHQJhXd/2Cdz51fZQoaAZoCWgPQwi+2HvxxdRxQJSGlFKUaBVL1WgWR0CYV5WQOnVHdX2UKGgGaAloD0MINJ2dDE5eckCUhpRSlGgVTQkBaBZHQJhY0hJRO1x1fZQoaAZoCWgPQwiWXMXidxJxQJSGlFKUaBVL1GgWR0CYWPyLAHmjdX2UKGgGaAloD0MIh4cwfpoRb0CUhpRSlGgVS75oFkdAmFlURJ2+wnV9lChoBmgJaA9DCOAqTyDsCnJAlIaUUpRoFUvdaBZHQJhZimwaBI51fZQoaAZoCWgPQwjqymd5HkdwQJSGlFKUaBVL5mgWR0CYWvHp8neBdX2UKGgGaAloD0MI9gzhmCUvcUCUhpRSlGgVS8VoFkdAmFr5KjBVMnV9lChoBmgJaA9DCPd4IR1es3FAlIaUUpRoFUvLaBZHQJhb5oWYWtV1fZQoaAZoCWgPQwg5KGGmLeRxQJSGlFKUaBVLt2gWR0CYXBQVsUItdX2UKGgGaAloD0MIeo8zTdg9YkCUhpRSlGgVTegDaBZHQJhdNI3BHkN1fZQoaAZoCWgPQwiU2/Y9KmpwQJSGlFKUaBVLvmgWR0CYXUClJpWWdX2UKGgGaAloD0MI88e0Ng1ZckCUhpRSlGgVS+RoFkdAmF4MeOn2qXV9lChoBmgJaA9DCPa0w18TwG9AlIaUUpRoFUu3aBZHQJhfMy2x6fJ1fZQoaAZoCWgPQwiKjuTynxtuQJSGlFKUaBVLwWgWR0CYYEh4dIXkdX2UKGgGaAloD0MIQrCqXr5Lc0CUhpRSlGgVS81oFkdAmGEzxXnyNHV9lChoBmgJaA9DCCXmWUmr8XFAlIaUUpRoFUvwaBZHQJhhmrOqvNh1fZQoaAZoCWgPQwjf36C9eoJxQJSGlFKUaBVLr2gWR0CYYghf0EowdX2UKGgGaAloD0MI628JwL+ScECUhpRSlGgVS6ZoFkdAmGS9jXnQpnV9lChoBmgJaA9DCH5xqUrb0GFAlIaUUpRoFU3oA2gWR0CYZZ7lJYkndX2UKGgGaAloD0MI4V0u4vvTcUCUhpRSlGgVS+ZoFkdAmGZAn2Iwd3V9lChoBmgJaA9DCHUBLzNs2HBAlIaUUpRoFUu4aBZHQJhme01IiC91fZQoaAZoCWgPQwgKLev+MbVxQJSGlFKUaBVL1mgWR0CYZwuP3i71dX2UKGgGaAloD0MINC4cCEkfckCUhpRSlGgVTRsBaBZHQJhnGPp6hQF1fZQoaAZoCWgPQwhvK702Gx1xQJSGlFKUaBVLsmgWR0CYaHxL0z0pdX2UKGgGaAloD0MIxVkRNVFPc0CUhpRSlGgVTS4BaBZHQJhpT0th/iJ1fZQoaAZoCWgPQwjDnQsjPdNyQJSGlFKUaBVLvGgWR0CYadS+QEIPdX2UKGgGaAloD0MIujE9YQndckCUhpRSlGgVS/5oFkdAmGsAzLwF1XV9lChoBmgJaA9DCGJp4Ec1CXFAlIaUUpRoFUvaaBZHQJhsK2nbZe11fZQoaAZoCWgPQwi+TX/2Y2lxQJSGlFKUaBVL52gWR0CYbFBv73wkdX2UKGgGaAloD0MIDRtl/Sa4cUCUhpRSlGgVS69oFkdAmG89A1Nxl3V9lChoBmgJaA9DCNrHCn7bKHFAlIaUUpRoFUvmaBZHQJhvjd/J/5N1fZQoaAZoCWgPQwjzc0NT9hNhQJSGlFKUaBVN6ANoFkdAmHDdKdxyXHV9lChoBmgJaA9DCCGP4EaKtXFAlIaUUpRoFUu1aBZHQJhxG63AmAt1fZQoaAZoCWgPQwik/nqFhYFkQJSGlFKUaBVN6ANoFkdAmHE/zjFQ23V9lChoBmgJaA9DCOMW83ODu3JAlIaUUpRoFUvmaBZHQJhxYZ3s5XF1fZQoaAZoCWgPQwjIfECgsxRxQJSGlFKUaBVL3WgWR0CYcYjfek57dX2UKGgGaAloD0MIsP7PYT7Tb0CUhpRSlGgVS7poFkdAmHL9Qj2SMnV9lChoBmgJaA9DCNmY1xGHYHBAlIaUUpRoFUviaBZHQJhzHmDDjzZ1fZQoaAZoCWgPQwiJl6dzRQxwQJSGlFKUaBVLwGgWR0CYc+hn8KoidX2UKGgGaAloD0MILc2tEFb1b0CUhpRSlGgVS9FoFkdAmHSB2bG3nnV9lChoBmgJaA9DCPlISnpYzXFAlIaUUpRoFUuYaBZHQJh2B9tuUEB1fZQoaAZoCWgPQwiI9xxYzsNyQJSGlFKUaBVNSQFoFkdAmHa11SwW33V9lChoBmgJaA9DCOhLb38ufXBAlIaUUpRoFUu1aBZHQJh3IQ6IWP91fZQoaAZoCWgPQwham8b22tpvQJSGlFKUaBVLxGgWR0CYd1TOPeYVdX2UKGgGaAloD0MI5KHvbiWlcUCUhpRSlGgVS9NoFkdAmHftqgyuZHV9lChoBmgJaA9DCLCvdakRdnBAlIaUUpRoFUveaBZHQJh4CBvrGBF1fZQoaAZoCWgPQwhKtyVywXRwQJSGlFKUaBVL02gWR0CYed9cry2AdX2UKGgGaAloD0MIxAWgUXo5cECUhpRSlGgVS6xoFkdAmHohPoFFD3V9lChoBmgJaA9DCDSAt0DC+3FAlIaUUpRoFUvvaBZHQJh6qfHxSYR1fZQoaAZoCWgPQwiwj05dOYxxQJSGlFKUaBVLrmgWR0CYfTXkHUtqdX2UKGgGaAloD0MId4NorWhMZUCUhpRSlGgVTegDaBZHQJh9jOqvNeN1fZQoaAZoCWgPQwjLuRRXVYhzQJSGlFKUaBVNKgFoFkdAmH3dzwMH8nV9lChoBmgJaA9DCALyJVTwoGFAlIaUUpRoFU3oA2gWR0CYfd2pyZKGdX2UKGgGaAloD0MItYgoJq8GcECUhpRSlGgVS8BoFkdAmH5h33YcvXV9lChoBmgJaA9DCOy+Y3gsN3FAlIaUUpRoFUvFaBZHQJh+odjoZAJ1fZQoaAZoCWgPQwhKYkm5ewxyQJSGlFKUaBVNBwFoFkdAmH7Tst03fnV9lChoBmgJaA9DCNVCyeRUW3BAlIaUUpRoFUv3aBZHQJh/QQVbiZR1fZQoaAZoCWgPQwj3Hi457kNxQJSGlFKUaBVLrWgWR0CYf7Ttb9qDdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 310,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
first_PPO/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a8dfd90a2c2e8016fde7b94bd942eb271306398ecfa68788813c8e7d2564177
|
3 |
+
size 87929
|
first_PPO/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38bca444b061044578e05bf68ff373f2e5aed1297f85ebeeb61203366a53a777
|
3 |
+
size 43393
|
first_PPO/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
first_PPO/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (230 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 267.5086315204213, "std_reward": 18.525064898434707, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-07T18:35:46.889564"}
|