omitakahiro
commited on
Commit
•
50d6f09
1
Parent(s):
57e0bba
Update README.md
Browse files
README.md
CHANGED
@@ -45,6 +45,43 @@ print(output)
|
|
45 |
## Dataset (fine-tuning)
|
46 |
- Ichikara instruction [[Web Page](https://liat-aip.sakura.ne.jp/wp/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF%E4%BD%9C%E6%88%90/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF-%E5%85%AC%E9%96%8B/)], [[Ppaer](https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/A6-3.pdf)]
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
## License
|
49 |
[MIT](https://opensource.org/licenses/MIT)
|
50 |
|
|
|
45 |
## Dataset (fine-tuning)
|
46 |
- Ichikara instruction [[Web Page](https://liat-aip.sakura.ne.jp/wp/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF%E4%BD%9C%E6%88%90/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF-%E5%85%AC%E9%96%8B/)], [[Ppaer](https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/A6-3.pdf)]
|
47 |
|
48 |
+
## Performance
|
49 |
+
|
50 |
+
**Stockmark Business Questions**
|
51 |
+
|
52 |
+
Dataset: https://huggingface.co/datasets/stockmark/business-questions
|
53 |
+
|
54 |
+
| model | accuracy |
|
55 |
+
|:---:|:---:|
|
56 |
+
|stockmark-100b-instruct| 0.90 |
|
57 |
+
|stockmark-13b-instruct| 0.80 |
|
58 |
+
|GPT-3.5-turbo[^1]| 0.42 |
|
59 |
+
|
60 |
+
[^1]: 0613
|
61 |
+
|
62 |
+
**Japanese Vicuna QA Benchmark**
|
63 |
+
|
64 |
+
We exclud categories that require calculation and coding, and use remaining 60 questions for evaluation.
|
65 |
+
|
66 |
+
GitHub: https://github.com/ku-nlp/ja-vicuna-qa-benchmark
|
67 |
+
|
68 |
+
| model | average score |
|
69 |
+
|:---:|:---:|
|
70 |
+
|stockmark-100b-instruct| 5.97 |
|
71 |
+
|tokyotech-llm/Swallow-70b-instruct-hf| 5.59 |
|
72 |
+
|GPT-3.5 (text-davinci-003)| 5.08 |
|
73 |
+
|
74 |
+
**Inference speed**
|
75 |
+
|
76 |
+
| model | time [s] for genrating 100 characters in Japanese |
|
77 |
+
|:---:|:---:|
|
78 |
+
|stockmark-100b-instruct[^2]| 1.86 |
|
79 |
+
| gpt-3.5-turbo | 2.15 |
|
80 |
+
| gpt-4-turbo | 5.48 |
|
81 |
+
|tokyotech-llm/Swallow-70b-instruct-hf[^2]| 2.22 |
|
82 |
+
|
83 |
+
[^2]: We measured the time using AWS Inferentia2.
|
84 |
+
|
85 |
## License
|
86 |
[MIT](https://opensource.org/licenses/MIT)
|
87 |
|