omitakahiro commited on
Commit
50d6f09
1 Parent(s): 57e0bba

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -0
README.md CHANGED
@@ -45,6 +45,43 @@ print(output)
45
  ## Dataset (fine-tuning)
46
  - Ichikara instruction [[Web Page](https://liat-aip.sakura.ne.jp/wp/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF%E4%BD%9C%E6%88%90/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF-%E5%85%AC%E9%96%8B/)], [[Ppaer](https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/A6-3.pdf)]
47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  ## License
49
  [MIT](https://opensource.org/licenses/MIT)
50
 
 
45
  ## Dataset (fine-tuning)
46
  - Ichikara instruction [[Web Page](https://liat-aip.sakura.ne.jp/wp/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF%E4%BD%9C%E6%88%90/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF-%E5%85%AC%E9%96%8B/)], [[Ppaer](https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/A6-3.pdf)]
47
 
48
+ ## Performance
49
+
50
+ **Stockmark Business Questions**
51
+
52
+ Dataset: https://huggingface.co/datasets/stockmark/business-questions
53
+
54
+ | model | accuracy |
55
+ |:---:|:---:|
56
+ |stockmark-100b-instruct| 0.90 |
57
+ |stockmark-13b-instruct| 0.80 |
58
+ |GPT-3.5-turbo[^1]| 0.42 |
59
+
60
+ [^1]: 0613
61
+
62
+ **Japanese Vicuna QA Benchmark**
63
+
64
+ We exclud categories that require calculation and coding, and use remaining 60 questions for evaluation.
65
+
66
+ GitHub: https://github.com/ku-nlp/ja-vicuna-qa-benchmark
67
+
68
+ | model | average score |
69
+ |:---:|:---:|
70
+ |stockmark-100b-instruct| 5.97 |
71
+ |tokyotech-llm/Swallow-70b-instruct-hf| 5.59 |
72
+ |GPT-3.5 (text-davinci-003)| 5.08 |
73
+
74
+ **Inference speed**
75
+
76
+ | model | time [s] for genrating 100 characters in Japanese |
77
+ |:---:|:---:|
78
+ |stockmark-100b-instruct[^2]| 1.86 |
79
+ | gpt-3.5-turbo | 2.15 |
80
+ | gpt-4-turbo | 5.48 |
81
+ |tokyotech-llm/Swallow-70b-instruct-hf[^2]| 2.22 |
82
+
83
+ [^2]: We measured the time using AWS Inferentia2.
84
+
85
  ## License
86
  [MIT](https://opensource.org/licenses/MIT)
87