student-abdullah commited on
Commit
848ddf5
·
verified ·
1 Parent(s): ecd09aa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -5
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- base_model: unsloth/meta-llama-3.1-8b-bnb-4bit
3
  language:
4
  - en
5
  license: apache-2.0
@@ -9,14 +9,38 @@ tags:
9
  - unsloth
10
  - llama
11
  - gguf
 
 
12
  ---
13
 
14
- # Uploaded model
 
15
 
16
  - **Developed by:** student-abdullah
17
  - **License:** apache-2.0
18
- - **Finetuned from model :** unsloth/meta-llama-3.1-8b-bnb-4bit
19
-
20
- This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
 
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model: Meta/Meta-Llama-3.1-8B
3
  language:
4
  - en
5
  license: apache-2.0
 
9
  - unsloth
10
  - llama
11
  - gguf
12
+ datasets:
13
+ - student-abdullah/BigPharma_Generic_Dataset
14
  ---
15
 
16
+
17
+ # Uploaded model
18
 
19
  - **Developed by:** student-abdullah
20
  - **License:** apache-2.0
21
+ - **Finetuned from model:** Meta/Meta-Llama-3.1-8B
 
 
22
 
23
+ ---
24
+ # Acknowledgement
25
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
26
+
27
+ ---
28
+ # Model Description
29
+ This model is fine-tuned from the Meta/Meta-Llama-3.1-8B base model to enhance its capabilities in generating relevant and accurate responses related to generic medications under the PMBJP scheme. The fine-tuning process included the following hyperparameters:
30
+
31
+ - Max Tokens: 512
32
+ - LoRA Alpha: 12
33
+ - LoRA Rank (r): 128
34
+ - Gradient Accumulation Steps: 32
35
+ - Batch Size: 2
36
+ - Qunatization: 8 bits
37
+
38
+ ---
39
+ # Model Quantitative Performace
40
+ - Training Quantitative Loss: 0.262 (at final 160th epoch)
41
+
42
+ ---
43
+ # Limitations
44
+ - Token Limitations: With a max token limit of 512, the model might not handle very long queries or contexts effectively.
45
+ - Training Data Limitations: The model’s performance is contingent on the quality and coverage of the fine-tuning dataset, which may affect its generalizability to different contexts or medications not covered in the dataset.
46
+ - Potential Biases: As with any model fine-tuned on specific data, there may be biases based on the dataset used for training.