Upload train.py
Browse files
train.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import jittor as jt
|
2 |
+
import path
|
3 |
+
from jittor import nn, Module
|
4 |
+
import numpy as np
|
5 |
+
import sys, os
|
6 |
+
import random
|
7 |
+
import math
|
8 |
+
from jittor import init
|
9 |
+
from model import Model
|
10 |
+
from jittor.dataset.mnist import MNIST
|
11 |
+
import jittor.transform as trans
|
12 |
+
|
13 |
+
# if jt.flags.use_cuda = 1 will use gpu
|
14 |
+
jt.flags.use_cuda = 1
|
15 |
+
pwd_path = os.path.abspath(os.path.dirname(__file__))
|
16 |
+
|
17 |
+
|
18 |
+
def train(model, train_loader, optimizer, epoch):
|
19 |
+
model.train()
|
20 |
+
for batch_idx, (inputs, targets) in enumerate(train_loader):
|
21 |
+
outputs = model(inputs)
|
22 |
+
loss = nn.cross_entropy_loss(outputs, targets)
|
23 |
+
optimizer.step(loss)
|
24 |
+
if batch_idx % 10 == 0:
|
25 |
+
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
|
26 |
+
epoch, batch_idx, len(train_loader),
|
27 |
+
100. * batch_idx / len(train_loader), loss.data[0]))
|
28 |
+
|
29 |
+
|
30 |
+
def test(model, val_loader, epoch):
|
31 |
+
model.eval()
|
32 |
+
|
33 |
+
test_loss = 0
|
34 |
+
correct = 0
|
35 |
+
total_acc = 0
|
36 |
+
total_num = 0
|
37 |
+
for batch_idx, (inputs, targets) in enumerate(val_loader):
|
38 |
+
batch_size = inputs.shape[0]
|
39 |
+
outputs = model(inputs)
|
40 |
+
pred = np.argmax(outputs.data, axis=1)
|
41 |
+
acc = np.sum(targets.data == pred)
|
42 |
+
total_acc += acc
|
43 |
+
total_num += batch_size
|
44 |
+
acc = acc / batch_size
|
45 |
+
print('Test Epoch: {} [{}/{} ({:.0f}%)]\tAcc: {:.6f}'.format(epoch, batch_idx, len(val_loader), 100. * float( batch_idx ) / len(val_loader), acc))
|
46 |
+
print('Total test acc =', total_acc / total_num)
|
47 |
+
|
48 |
+
|
49 |
+
def main():
|
50 |
+
batch_size = 32
|
51 |
+
learning_rate = 0.1
|
52 |
+
momentum = 0.9
|
53 |
+
weight_decay = 1e-4
|
54 |
+
epochs = 100
|
55 |
+
train_loader = MNIST(train=True, transform=trans.Resize(28)).set_attrs(batch_size=batch_size, shuffle=True)
|
56 |
+
|
57 |
+
val_loader = MNIST(train=False, transform=trans.Resize(28)) .set_attrs(batch_size=1, shuffle=False)
|
58 |
+
|
59 |
+
model = Model()
|
60 |
+
optimizer = nn.SGD(model.parameters(), learning_rate, momentum, weight_decay)
|
61 |
+
for epoch in range(epochs):
|
62 |
+
train(model, train_loader, optimizer, epoch)
|
63 |
+
test(model, val_loader, epoch)
|
64 |
+
|
65 |
+
save_model_path = os.path.join(pwd_path, 'model/mnist_model.pkl')
|
66 |
+
model.save(save_model_path)
|
67 |
+
|
68 |
+
|
69 |
+
if __name__ == '__main__':
|
70 |
+
main()
|