Upload wgan_gp.py
Browse files- wgan_gp.py +191 -0
wgan_gp.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import jittor as jt
|
2 |
+
from jittor import nn
|
3 |
+
import argparse
|
4 |
+
import os
|
5 |
+
import numpy as np
|
6 |
+
from jittor.dataset.mnist import MNIST
|
7 |
+
import jittor.transform as transform
|
8 |
+
import cv2
|
9 |
+
import time
|
10 |
+
from jittor.dataset.dataset import ImageFolder
|
11 |
+
|
12 |
+
jt.flags.use_cuda = 1
|
13 |
+
|
14 |
+
save_img_path = './images_celebA'
|
15 |
+
save_model_path = './save_model_celebA'
|
16 |
+
os.makedirs(save_img_path, exist_ok=True)
|
17 |
+
os.makedirs(save_model_path, exist_ok=True)
|
18 |
+
|
19 |
+
parser = argparse.ArgumentParser()
|
20 |
+
parser.add_argument('--n_epochs', type=int, default=200, help='训练的时期数')
|
21 |
+
parser.add_argument('--batch_size', type=int, default=128, help='批次大小')
|
22 |
+
parser.add_argument('--lr', type=float, default=0.0002, help='学习率')
|
23 |
+
parser.add_argument('--b1', type=float, default=0.5, help='梯度的一阶动量衰减')
|
24 |
+
parser.add_argument('--b2', type=float, default=0.999, help='梯度的一阶动量衰减')
|
25 |
+
parser.add_argument('--n_cpu', type=int, default=8, help='批处理生成期间要使用的 cpu 线程数')
|
26 |
+
parser.add_argument('--latent_dim', type=int, default=100, help='潜在空间的维度')
|
27 |
+
parser.add_argument('--img_size', type=int, default=28, help='每个图像尺寸的大小')
|
28 |
+
parser.add_argument('--celebA_channels', type=int, default=3, help='图像通道数')
|
29 |
+
parser.add_argument('--mnist_channels', type=int, default=1, help='图像通道数')
|
30 |
+
parser.add_argument('--n_critic', type=int, default=5, help='每个迭代器的鉴别器训练步骤数')
|
31 |
+
parser.add_argument('--clip_value', type=float, default=0.01, help='光盘的上下剪辑值。 权重')
|
32 |
+
parser.add_argument('--sample_interval', type=int, default=400, help='图像样本之间的间隔')
|
33 |
+
parser.add_argument('--task', type=str, default='celebA', help='训练数据集类型')
|
34 |
+
parser.add_argument('--train_dir', type=str, default='D:\\Image_Generation_Learn\\Dataset\\CelebA_train', help='训练数据集地址')
|
35 |
+
opt = parser.parse_args()
|
36 |
+
print(opt)
|
37 |
+
img_shape = (opt.celebA_channels, opt.img_size, opt.img_size)
|
38 |
+
|
39 |
+
# 训练集加载程序
|
40 |
+
def DataLoader(dataclass, img_size, batch_size, train_dir):
|
41 |
+
if dataclass == 'MNIST':
|
42 |
+
Transform = transform.Compose([
|
43 |
+
transform.Resize(size=img_size),
|
44 |
+
transform.Gray(),
|
45 |
+
transform.ImageNormalize(mean=[0.5], std=[0.5])])
|
46 |
+
train_loader = MNIST (data_root=train_dir, train=True, transform=Transform).set_attrs(batch_size=batch_size, shuffle=True)
|
47 |
+
elif dataclass == 'celebA':
|
48 |
+
Transform = transform.Compose([
|
49 |
+
transform.Resize(size=img_size),
|
50 |
+
transform.ImageNormalize(mean=[0.5, 0.5, 0.5],std=[0.5, 0.5, 0.5])])
|
51 |
+
train_loader = ImageFolder(train_dir)\
|
52 |
+
.set_attrs(transform=Transform, batch_size=batch_size, shuffle=True)
|
53 |
+
else:
|
54 |
+
print("没有加载%s数据集的程序,请选择MNIST或者celebA!" % dataclass)
|
55 |
+
dataclass = input("请输入:MNIST或者celebA:")
|
56 |
+
DataLoader(dataclass, img_size, batch_size,train_dir)
|
57 |
+
|
58 |
+
return train_loader
|
59 |
+
|
60 |
+
dataloader = DataLoader(opt.task,opt.img_size,opt.batch_size,opt.train_dir)
|
61 |
+
|
62 |
+
# 保存图片
|
63 |
+
def save_image(img, path, nrow=10):
|
64 |
+
N,C,W,H = img.shape
|
65 |
+
img2=img.reshape([-1,W*nrow*nrow,H])
|
66 |
+
img=img2[:,:W*nrow,:]
|
67 |
+
for i in range(1,nrow):
|
68 |
+
img=np.concatenate([img,img2[:,W*nrow*i:W*nrow*(i+1),:]],axis=2)
|
69 |
+
min_=img.min()
|
70 |
+
max_=img.max()
|
71 |
+
img=(img-min_)/(max_-min_)*255
|
72 |
+
img=img.transpose((1,2,0))
|
73 |
+
cv2.imwrite(path,img)
|
74 |
+
|
75 |
+
# 生成器
|
76 |
+
class Generator(nn.Module):
|
77 |
+
|
78 |
+
def __init__(self):
|
79 |
+
super(Generator, self).__init__()
|
80 |
+
|
81 |
+
def block(in_feat, out_feat, normalize=True):
|
82 |
+
layers = [nn.Linear(in_feat, out_feat)]
|
83 |
+
if normalize:
|
84 |
+
layers.append(nn.BatchNorm1d(out_feat, 0.8))
|
85 |
+
layers.append(nn.LeakyReLU(0.2))
|
86 |
+
return layers
|
87 |
+
self.model = nn.Sequential(*block(opt.latent_dim, 128, normalize=False), *block(128, 256), *block(256, 512), *block(512, 1024), nn.Linear(1024, int(np.prod(img_shape))), nn.Tanh())
|
88 |
+
|
89 |
+
def execute(self, z):
|
90 |
+
img = self.model(z)
|
91 |
+
img = img.view((img.shape[0], *img_shape))
|
92 |
+
return img
|
93 |
+
|
94 |
+
# 判别器
|
95 |
+
class Discriminator(nn.Module):
|
96 |
+
|
97 |
+
def __init__(self):
|
98 |
+
super(Discriminator, self).__init__()
|
99 |
+
self.model = nn.Sequential(nn.Linear(int(np.prod(img_shape)), 512),
|
100 |
+
nn.LeakyReLU(0.2),
|
101 |
+
nn.Linear(512, 256),
|
102 |
+
nn.LeakyReLU(0.2),
|
103 |
+
nn.Linear(256, 1),
|
104 |
+
)
|
105 |
+
|
106 |
+
def execute(self, img):
|
107 |
+
img_flat = img.reshape((img.shape[0], (- 1)))
|
108 |
+
validity = self.model(img_flat)
|
109 |
+
return validity
|
110 |
+
|
111 |
+
lambda_gp = 10
|
112 |
+
|
113 |
+
# 初始化生成器和判别器
|
114 |
+
generator = Generator()
|
115 |
+
discriminator = Discriminator()
|
116 |
+
|
117 |
+
# 优化器
|
118 |
+
optimizer_G = jt.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
|
119 |
+
optimizer_D = jt.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
|
120 |
+
|
121 |
+
# 损失函数(计算 WGAN GP 的梯度惩罚损失)
|
122 |
+
def compute_gradient_penalty(D, real_samples, fake_samples):
|
123 |
+
alpha = jt.array(np.random.random((real_samples.shape[0], 1, 1, 1)).astype('float32'))
|
124 |
+
interpolates = ((alpha * real_samples) + ((1 - alpha) * fake_samples))
|
125 |
+
d_interpolates = D(interpolates)
|
126 |
+
gradients = jt.grad(d_interpolates, interpolates)
|
127 |
+
gradients = gradients.reshape((gradients.shape[0], (- 1)))
|
128 |
+
gp =((jt.sqrt((gradients.sqr()).sum(1))-1).sqr()).mean()
|
129 |
+
return gp
|
130 |
+
|
131 |
+
batches_done = 0
|
132 |
+
warmup_times = -1
|
133 |
+
run_times = 3000
|
134 |
+
total_time = 0.
|
135 |
+
cnt = 0
|
136 |
+
|
137 |
+
# ----------
|
138 |
+
# 训练
|
139 |
+
# ----------
|
140 |
+
|
141 |
+
for epoch in range(opt.n_epochs):# 200
|
142 |
+
for i, (imgs, _) in enumerate(dataloader):
|
143 |
+
real_imgs = jt.array(imgs).float32()
|
144 |
+
|
145 |
+
# -----------------
|
146 |
+
# 训练生成器
|
147 |
+
# -----------------
|
148 |
+
|
149 |
+
z = jt.array((np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim))).astype('float32'))
|
150 |
+
fake_imgs = generator(z)
|
151 |
+
real_validity = discriminator(real_imgs)
|
152 |
+
fake_validity = discriminator(fake_imgs)
|
153 |
+
gradient_penalty = compute_gradient_penalty(discriminator, real_imgs, fake_imgs)
|
154 |
+
d_loss = (- real_validity.mean() + fake_validity.mean() + lambda_gp * gradient_penalty)
|
155 |
+
d_loss.sync()
|
156 |
+
optimizer_D.step(d_loss)
|
157 |
+
|
158 |
+
# ---------------------
|
159 |
+
# 训练判别器
|
160 |
+
# ---------------------
|
161 |
+
|
162 |
+
if ((i % opt.n_critic) == 0):
|
163 |
+
fake_img = generator(z)
|
164 |
+
fake_validityg = discriminator(fake_img)
|
165 |
+
g_loss = -fake_validityg.mean()
|
166 |
+
g_loss.sync()
|
167 |
+
optimizer_G.step(g_loss)
|
168 |
+
|
169 |
+
if warmup_times==-1:
|
170 |
+
print(('[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]' % (epoch, opt.n_epochs, i, len(dataloader), d_loss.data, g_loss.data)))
|
171 |
+
#if ((batches_done % opt.sample_interval) == 0):
|
172 |
+
if ( i == 1583 ):#根据opt.batch_size而变化,每批次保存一次
|
173 |
+
save_image(fake_imgs.data[:25], ('%s/%d.png' % (save_img_path, batches_done)), nrow=5)
|
174 |
+
batches_done += opt.n_critic
|
175 |
+
|
176 |
+
if warmup_times!=-1:
|
177 |
+
jt.sync_all()
|
178 |
+
cnt += 1
|
179 |
+
print(cnt)
|
180 |
+
if cnt == warmup_times:
|
181 |
+
jt.sync_all(True)
|
182 |
+
sta = time.time()
|
183 |
+
if cnt > warmup_times + run_times:
|
184 |
+
jt.sync_all(True)
|
185 |
+
total_time = time.time() - sta
|
186 |
+
print(f"run {run_times} iters cost {total_time} seconds, and avg {total_time / run_times} one iter.")
|
187 |
+
exit(0)
|
188 |
+
|
189 |
+
if epoch % 10 == 0:# 0-199
|
190 |
+
generator.save("%s/generator_%s.pkl"%(save_model_path, opt.task))
|
191 |
+
discriminator.save("%s/discriminator_%s.pkl"%(save_model_path, opt.task))
|