stulcrad's picture
Model save
d06e73d verified
|
raw
history blame
3 kB
metadata
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
  - generated_from_trainer
datasets:
  - cnec
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: CNEC1_1_extended_xlm-roberta-large
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: cnec
          type: cnec
          config: default
          split: validation
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.8424273329933707
          - name: Recall
            type: recall
            value: 0.882950293960449
          - name: F1
            type: f1
            value: 0.8622129436325678
          - name: Accuracy
            type: accuracy
            value: 0.9652851996991648

CNEC1_1_extended_xlm-roberta-large

This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the cnec dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2119
  • Precision: 0.8424
  • Recall: 0.8830
  • F1: 0.8622
  • Accuracy: 0.9653

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3746 0.86 500 0.1861 0.7228 0.8097 0.7638 0.9523
0.2127 1.72 1000 0.1635 0.7829 0.8461 0.8133 0.9611
0.1494 2.58 1500 0.1704 0.7579 0.8466 0.7998 0.9546
0.1274 3.44 2000 0.1800 0.8003 0.8675 0.8325 0.9615
0.0987 4.3 2500 0.1511 0.8025 0.8883 0.8432 0.9657
0.0827 5.16 3000 0.1910 0.8179 0.8739 0.8450 0.9630
0.0677 6.02 3500 0.1655 0.8374 0.8808 0.8586 0.9689
0.0475 6.88 4000 0.1793 0.8270 0.8658 0.8460 0.9633
0.0396 7.75 4500 0.1687 0.8363 0.8899 0.8622 0.9672
0.0256 8.61 5000 0.1904 0.8315 0.8808 0.8554 0.9665
0.0223 9.47 5500 0.2119 0.8424 0.8830 0.8622 0.9653

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0