--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC1_1_extended_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8533541341653667 - name: Recall type: recall value: 0.8770710849812934 - name: F1 type: f1 value: 0.8650500790722193 - name: Accuracy type: accuracy value: 0.9670664608320468 --- # CNEC1_1_extended_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.1498 - Precision: 0.8534 - Recall: 0.8771 - F1: 0.8651 - Accuracy: 0.9671 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3961 | 1.0 | 581 | 0.1800 | 0.8004 | 0.8231 | 0.8116 | 0.9560 | | 0.1772 | 2.0 | 1162 | 0.1518 | 0.8357 | 0.8648 | 0.8500 | 0.9642 | | 0.1266 | 3.0 | 1743 | 0.1545 | 0.8377 | 0.8717 | 0.8544 | 0.9680 | | 0.1043 | 4.0 | 2324 | 0.1472 | 0.8473 | 0.8691 | 0.8580 | 0.9656 | | 0.0804 | 5.0 | 2905 | 0.1498 | 0.8534 | 0.8771 | 0.8651 | 0.9671 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0