--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC1_1_extended_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8750653423941454 - name: Recall type: recall value: 0.89470871191876 - name: F1 type: f1 value: 0.8847780126849896 - name: Accuracy type: accuracy value: 0.9699164786446582 --- # CNEC1_1_extended_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2020 - Precision: 0.8751 - Recall: 0.8947 - F1: 0.8848 - Accuracy: 0.9699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3776 | 1.0 | 581 | 0.1732 | 0.7868 | 0.8423 | 0.8136 | 0.9580 | | 0.1773 | 2.0 | 1162 | 0.1476 | 0.8243 | 0.8675 | 0.8453 | 0.9625 | | 0.127 | 3.0 | 1743 | 0.1522 | 0.8373 | 0.8691 | 0.8529 | 0.9654 | | 0.1057 | 4.0 | 2324 | 0.1516 | 0.8604 | 0.8728 | 0.8665 | 0.9665 | | 0.0852 | 5.0 | 2905 | 0.1555 | 0.8501 | 0.8883 | 0.8688 | 0.9700 | | 0.069 | 6.0 | 3486 | 0.1847 | 0.8637 | 0.8910 | 0.8771 | 0.9681 | | 0.0452 | 7.0 | 4067 | 0.1751 | 0.8666 | 0.8851 | 0.8757 | 0.9682 | | 0.0385 | 8.0 | 4648 | 0.1968 | 0.8626 | 0.8888 | 0.8755 | 0.9690 | | 0.0326 | 9.0 | 5229 | 0.1932 | 0.8717 | 0.8936 | 0.8826 | 0.9704 | | 0.026 | 10.0 | 5810 | 0.2020 | 0.8751 | 0.8947 | 0.8848 | 0.9699 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0