--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC1_1_extended_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.848714069591528 - name: Recall type: recall value: 0.8995189738107964 - name: F1 type: f1 value: 0.8733783082511676 - name: Accuracy type: accuracy value: 0.9711435696473103 --- # CNEC1_1_extended_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.1689 - Precision: 0.8487 - Recall: 0.8995 - F1: 0.8734 - Accuracy: 0.9711 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3372 | 1.72 | 500 | 0.1525 | 0.7806 | 0.8632 | 0.8198 | 0.9639 | | 0.117 | 3.44 | 1000 | 0.1341 | 0.8162 | 0.8899 | 0.8514 | 0.9702 | | 0.077 | 5.15 | 1500 | 0.1457 | 0.8204 | 0.8765 | 0.8475 | 0.9672 | | 0.0548 | 6.87 | 2000 | 0.1759 | 0.8449 | 0.8910 | 0.8673 | 0.9690 | | 0.037 | 8.59 | 2500 | 0.1689 | 0.8487 | 0.8995 | 0.8734 | 0.9711 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0