--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC1_1_extended_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8424273329933707 - name: Recall type: recall value: 0.882950293960449 - name: F1 type: f1 value: 0.8622129436325678 - name: Accuracy type: accuracy value: 0.9652851996991648 --- # CNEC1_1_extended_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2119 - Precision: 0.8424 - Recall: 0.8830 - F1: 0.8622 - Accuracy: 0.9653 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3746 | 0.86 | 500 | 0.1861 | 0.7228 | 0.8097 | 0.7638 | 0.9523 | | 0.2127 | 1.72 | 1000 | 0.1635 | 0.7829 | 0.8461 | 0.8133 | 0.9611 | | 0.1494 | 2.58 | 1500 | 0.1704 | 0.7579 | 0.8466 | 0.7998 | 0.9546 | | 0.1274 | 3.44 | 2000 | 0.1800 | 0.8003 | 0.8675 | 0.8325 | 0.9615 | | 0.0987 | 4.3 | 2500 | 0.1511 | 0.8025 | 0.8883 | 0.8432 | 0.9657 | | 0.0827 | 5.16 | 3000 | 0.1910 | 0.8179 | 0.8739 | 0.8450 | 0.9630 | | 0.0677 | 6.02 | 3500 | 0.1655 | 0.8374 | 0.8808 | 0.8586 | 0.9689 | | 0.0475 | 6.88 | 4000 | 0.1793 | 0.8270 | 0.8658 | 0.8460 | 0.9633 | | 0.0396 | 7.75 | 4500 | 0.1687 | 0.8363 | 0.8899 | 0.8622 | 0.9672 | | 0.0256 | 8.61 | 5000 | 0.1904 | 0.8315 | 0.8808 | 0.8554 | 0.9665 | | 0.0223 | 9.47 | 5500 | 0.2119 | 0.8424 | 0.8830 | 0.8622 | 0.9653 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0