--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC1_1_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8197264815582262 - name: Recall type: recall value: 0.873289183222958 - name: F1 type: f1 value: 0.8456605386917486 - name: Accuracy type: accuracy value: 0.9604980678402748 --- # CNEC1_1_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2155 - Precision: 0.8197 - Recall: 0.8733 - F1: 0.8457 - Accuracy: 0.9605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.7506 | 0.85 | 500 | 0.2818 | 0.6550 | 0.7687 | 0.7073 | 0.9354 | | 0.2862 | 1.7 | 1000 | 0.2055 | 0.7555 | 0.8238 | 0.7882 | 0.9500 | | 0.2057 | 2.56 | 1500 | 0.2090 | 0.7792 | 0.8415 | 0.8092 | 0.9534 | | 0.1698 | 3.41 | 2000 | 0.1992 | 0.7818 | 0.8623 | 0.8201 | 0.9575 | | 0.1366 | 4.26 | 2500 | 0.2036 | 0.8086 | 0.8746 | 0.8403 | 0.9584 | | 0.1049 | 5.11 | 3000 | 0.2000 | 0.8062 | 0.8689 | 0.8364 | 0.9607 | | 0.0885 | 5.96 | 3500 | 0.2087 | 0.8059 | 0.8689 | 0.8362 | 0.9571 | | 0.0673 | 6.81 | 4000 | 0.2063 | 0.8281 | 0.8786 | 0.8526 | 0.9602 | | 0.0628 | 7.67 | 4500 | 0.2155 | 0.8197 | 0.8733 | 0.8457 | 0.9605 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0